首页/文章/ 详情

案例 | 用伴随求解器求解二维圆柱层流

1年前浏览2007


PART 01  
问题描述    

模型是一个圆柱体,上面和下面都是对称平面。流动是层流,不可压缩,基于圆柱体直径的雷诺数为40。在这个雷诺数下,流动是稳定的。


PART 02  
求解设置    

读入圆柱体case和date文件:File → Read → Case & Data...

数据文件包含先前计算的流解,它将作为伴随计算的起点。部分网格和速度场如下图:

定义observables

通过打开“伴随观察”对话框开始设置伴随求解器。在这里你将创建升力和阻力观测。单击Design功能区选项卡的Gradient-Based组中的任何按钮将激活伴随求解器。


点击Manage...按钮打开“Manage Adjoint Observables”对话框。点击“create”创建新的观测对象。

在“Manage Adjoint Observables”对话框中重复上述步骤,通过以下设置创建一个lift观察对象:

计算drag灵敏度
在adjoint postprocess options中选择minimize

单击“评估”可在控制台中打印对壁面的阻力的值。

调整求解控制:Design → Gradient-Based → Solver Controls...

Design → Gradient-Based → Monitors...

使用“Run Adjoint Calculation”对话框运行伴随求解器

后处理及导出drag灵敏度

Design → Gradient-Based → Reporting...

动量源灵敏度

形状灵敏度

Results → Graphics → Vectors → New...

该图显示了圆柱体上的阻力对表面形状变化的敏感程度。如果圆柱在上游而不是下游变形,则阻力受到的影响更大。最大的效果是通过在横流方向缩小圆柱。

导出阻力灵敏度数据在计算lift观测灵敏度之前,需要定义受几何变形影响的区域,并导出阻力灵敏度数据,以便稍后在多目标优化中使用。

打开“设计工具”对话框:Design → Gradient-Based → Design Tool...

Click Larger Region several times until the X and Y Limits are ±1.907349 m

In the Objectives tab, click Manage Data....

计算升力灵敏度

Design → Gradient-Based → Observable...

修改形状:加载先前保存的阻力灵敏度数据。

定义每个可观察对象的目标。

配置变形区域。

计算设计变更并修改网格。

点击网格组框中的修改按钮,应用计算的网格变形,将重新定位网格的边界和内部节点。关于网格修改的信息打印在控制台中。

显示新的网格几何。

重新计算:Solution → Run Calculation → Calculate

请注意,与未变形圆柱体上的阻力相比,阻力变化了-120.57牛或-9.5%。这个值与伴随求解器预测的-127.2 N(-10%)的变化非常吻合。升力增加了122.4 N,这与预测的127.5 N的变化非常吻合。

PART 03  
总结    

本教程演示了如何使用伴随求解器来计算圆柱上的阻力和升力对先前计算的流场的各种输入的灵敏度。说明了伴随求解器的建立和运行过程。还描述了执行各种形式的后处理的步骤。设计变更工具用于对设计进行多目标变更,以可预测的方式减少阻力并增加升力。

来源:CFD流

附件

免费链接.txt
控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-05-25
最近编辑:1年前
CFD流
硕士 | CFD工程师 微信公众号:CFD流
获赞 125粉丝 2394文章 47课程 17
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈