增材制造技术(俗称 3D 打印技术)是制造下一代更有可持续性的燃气轮机&航空发动机的关键技术。增材制造工艺最大程度地提高了设计灵活性,并能集成额外的功能,对于复杂轮廓的设计优化也无额外的成本,这使得部件的设计不再局限于传统技术的约束,从而为复杂燃气轮机&航空发动机零部件创新与优化带来了更大的空间。
原型制造
即通过树脂、塑料等非金属材料打印的概念原型与功能原型。其中概念原型用于展示产品设计的整体概念、立体形态和布局安排,功能原型则用于优化产品的设计,促进新产品的开发,如检查产品的结构设计,模拟装配、装配干涉检验等。
间接制造
即通过 3D 打印技术完成工、模具制造,再采用3D 打印工模具进行零件的制造。殊不知,伴随着 3D 打印技术的发展,特别是金属 3D 打印技术近年来取得的进展,增材制造技术的应用已不仅仅局限于快速响应产品的外观设计,抑或是工艺辅助的间接制造,而是延伸到了金属功能零件的直接制造。
制备高成本材料零件
美国最大的航空发动机制造公司之一普惠公司应用增材制造技术用于发动机的镍基合金和钛合金部件的研制,结果显示:不但获得了与当前材料一致的性能,大大缩短了制造周期,提升了复杂几何结构的制造精度;而且原材料消耗降低了 50%,并将发动机的 BTF 比(原材料质量与部件最终质量之比)从传统工艺的 20:1 降低到 2:1 以下,有效地提高了部件的质量和降低了制造成本。
高性能成形修复受损零件
其实除了航空航天领域外,机械、能源、船舶、模具等行业也对大型装备的高性能快速修复提出了迫切需求。
据悉,西门子公司计划从 2014 年开始采用金属 3D 打印技术制造和修复燃气轮机的某些金属零部件,并称在某些情况下,通过 3D 打印技术可以把对涡轮燃烧器的修理时间从 44 周缩减为 4 周。
异质材料的组合制造
结合拓扑优化的轻量化制造
例如,空客 A320 飞机的大尺寸“仿生”机舱隔离结构,这一结构是通过拓扑优化设计,金属 3D 打印制造而成,材料是采用的超强且轻质合金材料 Scalmalloy。A320 全新的机舱设计与原有的隔离结构相比,新型的仿生隔离结构由几个不同的部件组成,不仅强度更高,而且将其总量减轻了 45%。
另外,GE 采用增材制造技术制造的 Leap 喷气发动机的金属燃料喷嘴,是通过长达 10 多年的探索通过不断优化、测试、再优化,才达到零件数量从 20 多个减少到了一个。
这样造出的燃油喷嘴不仅重量更轻,而且改善了喷油嘴容易过热和积碳的问题,将喷油嘴的使用寿命提高了 5 倍;另外,减少组装也提升了喷嘴的稳定性,并为公司降低了物流、组装、焊接等方面的成本。
成形传统工艺制造难度大的零件
快速成形小批量非标件
增材制造技术改变了传统的制造方式,为复杂金属结构功能件的直接制造提供了新思路,对于制造业而言有着广阔的应用前景。未来金属 3D 打印机将会越来越多的取代部分传统加工制造设备,但是增材制造技术也有其缺陷与不足,并不能完全取代减材制造,而是并列互补的关系。