首页/文章/ 详情

浙海大李振华教授丨舰载增材制造可行性探究及振动环境对电弧熔滴与成形的影响机理

1年前浏览5428
        

研究背景及目的

电弧增材制造技术克服了激光束、电子束等成形设备昂贵、不适合现场修复的劣势,为实现舰船装备随舰修造提供了可能性。但舰船的振动对其搭载设备的性能甚至是运行会造成巨大的影响,为探究舰载电弧增材制造的可行性,需深入研究舰载振动环境对成形的影响,弄清增材成形过程中电弧、熔滴过渡的演变规律和机理。     

论文链接:            
https://doi.org/10.1016/j.cjmeam.2023.100067              
Xuezhi Shi, Chengheng Cai, Pengfei Bao, Zhenhua Li. Influence of Ship-based Vibration on Characteristics of Arc and Droplet and Morphology in Wire Arc Additive Manufacturing. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023, 2(1): 100067.              

论文亮点

(1)研究了电弧增材制造设备在舰载振动环境下的振动响应。

(2)探明了舰载振动环境下电弧形态、熔滴过渡行为的演变形式。

(3)揭示了舰载振动环境下电弧形态、熔滴过渡行为的失稳机制。

(4)验证了舰载电弧增材制造具有一定可行性。

图1 舰载振动环境下熔滴过渡行为及机理

           

试验方法

将电弧增材制造设备置于振动平台上,通过正弦变频振动信号模拟舰船振动,进行ER50-6低碳钢的沉积实验,通过振动信号采集系统实时检测焊枪和工作基板的振动信号,高速摄像机监控系统拍摄记录电弧、熔滴过渡的信息,定量评定电弧弧锥角、弧偏角、熔滴过渡形式、熔滴直径、熔滴偏离角度和成形件的形貌精度,分析舰载振动环境中电弧、熔滴过渡的演变行为及对成形形貌的影响。

             

研究结果

(1)在外部振动环境的影响下,电弧增材制造设备各部位会随之发生振动,其中对成形影响最大的焊枪和基板产生了差异性的振动,导致电弧和熔滴过渡行为发生改变,从而恶化成形形貌。

(2)电弧形态变得更不稳定,从钟罩形变成喇叭形、扇形、扫把形以及不规则形状等,弧偏角和弧锥角的波动范围远远超过了稳态的,平均值分别为9.8°和61.9°。

(3)熔滴偏离更严重,是稳态时的2倍;过渡形式也从稳态下的喷射过渡,出现了大量大滴过渡和短路过渡,平均熔滴过渡时间和熔滴直径均大于稳态的,分别为13.9ms和1.5mm。

(4)成形试样形貌有所恶化,但内部依然是致密、无缺陷。                         

主要结论

确保电弧形态、熔滴过渡行为和熔池形貌的稳定是实现高质量成形的关键。本文通过实时检测电弧增材制造设备焊枪和工作基板的振动信号、记录成形过程中电弧、熔滴过渡行为的演变,分析了舰载振动环境是如何影响成形过程,从而导致成形件形貌改变的。该研究初步验证了电弧增材制造在舰载振动环境下具有较高的适用性,但恶劣振动工况下仍然面临挑战,有待进一步研究。              

前景与应用

“舰载增材制造”是将增材制造设备搬到舰船上,充分发挥增材制造技术能快速按需制备零部件的特点,对于深远海的开发应用和舰船的维修维护具有重要作用。但迄今为止,增材制造随舰修造仍处于探索和评估阶段,特别是质量认证严格的金属零部件还未见成功案例的报道。电弧增材制造具有良好的环境适应性和容错性,具备上舰制造的发展潜力和应用前景。

               

团队近些年研究成果

[1] Shi Xuezhi, Huang Yunfeng, Li Zhenhua, Feng Wuwei, Ma Shuyuan. Effect of substrate            
preheating, remelting, in-situ presintering on the formation of cracking of Ti-47Al-2Cr-2Nb            
fabricated by Selective Laser Melting, Rare Metal Materials and Engineering, 2022, 51(8): 2739-2744.            
[2] Zhen-Hua Li, Yu-Yue Wang, Jian Wang, et al. Effect of Cryogenic Heat Treatment and Heat Treatment on the Influence of Mechanical, Mechanical, Energy, and Wear Properties of 316L Stainless Steel by Selective Laser Melting[J]. JOM, 2022.            
[3] Xuezhi Shi, Huaxue Wang, Wuwei Feng, Yulian Zhang, Shuyuan Ma, Jun Wei. The crack and pore formation mechanism of Ti-47Al-2Cr-2Nb alloy fabricated by selective laser melting, International Journal of Refractory Metals and Hard Materials, 2020, 91: 105247.            
[4] Xuezhi Shi, Cheng Yan, Wuwei Feng, Yulian Zhang, Zhe Leng. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting, Optics and Laser Technology, 2020, 132: 106471.            
[5] Xuezhi Shi, Yunqian Long, Huiqiu Zhang, Liqiao Chen, Yingtang Zhou, Xiaoming Yu, Xuan Yu, Lu Cai, Zhe Leng. Role of LPSO Phase in Crack Propagation Behavior of an As-Cast Mg-Y-Zn Alloy Subjected to Dynamic Loadings, Materials, 2019, 12(3): 498.            
[6] 鲍鹏飞, 尹博, 石学智. 低频机械振动对电弧增材制造低碳钢组织和力学性能的影响, 铸造, 2023, 3 (72): 1-7.            
[7] Yunfeng Huang, Xuezhi Shi. Effect of different active materials on WAAM depth of penetration and weld morphology, MATEC Web of Conferences, 2022, 358, 01053.            
[8] Shuang Lin, Xuezhi Shi. Research on application of reverse engineering and 3D printing technology in object recognition, IOP Conf. Series: Earth and Environmental Science, 2021, 781, 022073.            
[9] Yunfeng Huang, Xuezhi Shi. Study on mechanical properties of stainless steels with different crystal structures based on laser selection melting technology, AIP Conference Proceedings, 2022, 2474, 020025.            
[10] Bo Yin, Meiguang Cao, Yu Sun, Angang Cao, Zhonglin Zhang, Zhe Leng, Wuwei Feng, Xuezhi Shi, Ruiqi Han. Enhanced crack buffering of additively manufactured Ti-6Al-4V alloy using calcium            

fluoride particles, Journal of Materials Research and Technology, 2023, 02, 155.


来源:增材制造硕博联盟
MechanicalAdditive振动航空航天电子增材铸造试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-05-09
最近编辑:1年前
增材制造博硕联盟
硕士 聚焦增材制造科研与工程应用,致...
获赞 120粉丝 66文章 528课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈