首页/文章/ 详情

电动汽车驱动电机振动噪声问题分析优化

1年前浏览6999

摘 要:在节能和环保的大背景下,汽车电动化进程不断加快,作为电动汽车核心部件的驱动电机也因此受到越来越多的关注。对振动噪声问题的处理是开发研究驱动电机的一个关键所在,其会直接影响到车内人员的驾乘体验,是电动汽车质量优劣的重要影响因素之一。本文主要阐述了迄今为止驱动电机的类型,驱动电机不同种类的振动噪声问题以及不同种类振动噪声对应的相关优化措施。通过对驱动电机振动噪声问题的研究和优化,使驱动电机工作时更加安静,给车内人员更好的驾乘体验。
关键词:电动化 驱动电机 振动噪声
1 前言
21 世纪以来,我国汽车行业飞速发展,私家车数量增加,因此对化石燃料的需求增加,但我国资源储量有限,因此进口量逐渐增加 [1]。同时,由内燃机汽车燃烧化石燃料排出的尾气造成的空气污染问题也不容小觑,环保形势也愈发严峻。目前,针对此情况主要提出了两种方案:一是寻找环保的替代能源,如太阳能、氢能等;二是改变驱动方式,使用电机作为新的动力源,发展电动汽车。近几年,汽车电动化是一个越来越明显的趋势。随着电动汽车的逐渐发展,驱动电机朝着大功率与大转矩的方向不断发展,随之而来整体噪声也会不断加大 [2]。与此同时,消费者对电动汽车的使用要求也在不断提高,电动汽车驾乘时的安静和舒适是消费者考虑的一项重大指标。因此,用驱动电机取代内燃机所带来的新的振动噪声问题必须引起重视,因为这和车内人员的驾乘体验以及电动汽车的质量密切相关。
2 电动汽车驱动电机种类
随着汽车电动化的发展,驱动电机也经历了演变过程,主要存在直流电机、交流异步电机、永磁式电机和开关磁阻电机这几种[3],表 1 为这几种电机性能在各方面的综合对比。
         
(1)直流电机:早期在汽车上使用的驱动电机,它将直流电能转换为机械能来驱动汽车行驶,其结构如图 1 所示。但因为其转速较低,逐渐不能满足人们对高速度的需求,同时其可靠性低,维护起来较复杂,因此其在电动汽车上的应用逐渐减少。
         
(2)交流异步电机:结构简单,稳定性高,通用性强,抗震性能好,与直流电动机相比,其效率更高,其结构如图 2 所示,目前在大功率的电动汽车上使用较多 [4]。
(3)永磁式电机:分为两类,一种是无刷直流,另一种是永磁同步。其结构简单,功率因数高 [5],运行效率高,振动噪声小,永磁同步根据转子磁路结构可以分为两种,分别为内置式和表贴式,其结构如图 3,图 4 所示,目前被广泛使用在电动汽车上,有较大的发展前景。
(4)开关磁阻电机:在现有的驱动电机中,拥有更加简单的结构,其结构如图 5所示。同时,可靠性高,控制策略简单,效率高,成本低等优势促进了它的发展。但是其噪声和振动较大,目前在电动三轮车上使用较多。
3 驱动电机振动噪声问题
3.1 驱动电机振动噪声形势
目前,整个电动汽车行业都面临着驱动电机的振动噪声挑战。一方面,就传统的内燃机汽车而言,主机厂对其拥有丰富的治理振动噪声的经验,但用驱动电机替代内燃机以后,不仅汽车行驶时的动力来源发生变化,而且电动汽车的传动系统、振动噪声的传递路径和传统内燃机汽车相比较也发生了变化,其传动原理如图 6 所示,这让主机厂处理电动汽车驱动电机振动噪声问题时比较棘手;另一方面,就传统的电机而言,电机厂对其拥有丰富的治理振动噪声的经验,但是这些相关经验并不能完全适用于处理用于驱动整车的驱动电机。因此,主机厂和电机厂需要通力合作,克服这一业界难点,提高电动汽车的整车品质。
3.2 驱动电机噪声分类
总的来说,虽然形成噪声的因素有很多,可以将这些噪声分为三种。
(1)电磁噪声。其由电磁力的转矩波动产生 , 按照激振源可以分为倍频、齿谐波、滑差三种。无论在任何条件下,只要电流存在,都会产生电磁噪声 [6],其中电磁噪声与电流谐波的关系如图 7 所示。因为有谐波的存在,会让电流的波形图不是规则的正弦图像,如图 8 所示,而且从图中可以看出,还会有一些“毛刺”产生,会让电动汽车在行驶的时候产生一些尖锐刺耳的噪声。当司机驾驶电动汽车时,驱动电机在工作过程中产生的电磁噪声给司机的感受是最直接的。和传统用内燃机作为动力源的汽车产生的噪声相比较,电动汽车驱动电机产生的电磁噪声频率更高,因此电磁噪声对车内人员的驾乘体验有着重大影响,是最主要的噪声。
(2)机械噪声。驱动电机在运行过程中的产生机械噪声,主要是由轴承等结构的摩擦和转子的动平衡问题造成的。
(3)空气动力噪声。驱动电机工作时会产生热量,因而需要冷却液和风扇的存在。转子和风扇在转动过程中,会影响电机内的气流变化,因而气流波动产生响声进入人耳形成噪声。另外,由于冷却液的流动,加重了这种声音对车内驾乘人员干扰。通过总结,将空气动力噪声细分为三类,为后续进行振动噪声的优化提供理论基础。
旋转噪声。驾驶汽车时,驱动电机由于处于持续工作状态,需要及时散热避免产生安全隐患,此时风扇急速运转,对气流产生影响,会产生压力脉动,形成旋转噪声。涡流噪声。由于转子表面有凸起,当转子旋转时,会对气流形成影响。因为风扇的冷却作用会造成空气湍流,同时转子运动也会形成湍流,这两者不是同时出现,会形成涡流 [7]。
笛鸣噪声。因为驱动电机表面是不规则的,气流遇到凸起阻碍时会产生类似笛声的声音,随转动部件和固定部件之间气隙的减小而增强 [8]。
4 驱动电机噪声优化
4.1 电磁噪声优化
针对电磁噪声的优化要考虑的因素比较多,因为在控制电磁噪声的同时,还需要使驱动电机的性能符合要求。电磁噪声大小主要与气隙中定子、转子之间的相互作用产生的径向力,电机组成部件的动态响应有关,因此可以采取以下措施来减小驱动电机电磁噪声:合理选择气隙磁密,以使在降低噪声的同时更好的平衡驱动电机的性能;增加定子槽数以减少谐波分布系数,以减小径向电磁力谐波及转矩脉动 [9];转子设计时由直槽改为斜槽;降低驱动电机定子表面的动态振动;选择合适的槽配合来降低驱动电机的电磁噪声。
4.2 机械噪声优化
针对驱动电机的机械噪声优化主要分为两方面进行,一方面是对轴承噪声进行控制,另一方面是对由转子动平衡问题产生的噪声进行控制。
对轴承噪声可采取以下措施:轴承径向游隙的大小要适当,过大会使电机的低频噪声变大,过小会使电机高频变大;选择密封轴承,避免杂物及油污进入;轴承端盖的结构设计要合理,使轴承内圈与转轴的配合,轴承外圈与轴承室的配合更加
恰当。
针对转子动平衡问题可采取以下措施:提高转子的动平衡精度,应大于 G2.5,尽量
减少驱动电机工作时因转子质量分布不均匀产生的离心力的大小。
4.3 空气动力噪声优化
针对驱动电机的几种空气动力噪声,可以采取以下措施:在满足驱动电机使用要求的前提下,合理设计电机的结构,使风扇以尽量小的转速满足驱动电机的散热要求,这有助于降低风扇旋转时产生的噪声;合理设计风扇的结构,减少风扇旋转时打击空气产生的涡流噪声;提高驱动电机的工艺制作水平,减少定子、转子表面的粗糙度,有助于减小笛鸣噪声。
5 结束语
通过上述介绍可以发现,驱动电机的振动噪声问题很复杂,影响因素有很多,而且有时不同噪声之间也会产生影响,治理时需要综合考量各种因素,在满足使用要求的前提下,应尽量减少驱动电机的振动噪声,提高整车品质,给驾乘人员更好的体验感。
作者:王康 秦永法
作者单位:扬州大学机械工程学院 江苏省扬州市 225100
来源:汽车零部件



来源:汽车NVH云讲堂
振动燃烧湍流电磁力通用汽车新能源理论电机传动太阳能NVH控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-05-09
最近编辑:1年前
吕老师
硕士 28年汽车行业从业经验,深耕悬置...
获赞 284粉丝 680文章 1377课程 16
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈