首页/文章/ 详情

展频技术是如何搞定时钟信号的辐射的

1年前浏览555

先前我们说了说:为什么时钟信号比数据信号更容易引起辐射超标?

为什么时钟信号比数据信号更容易引起辐射超标?

并且做了试验,如果认真看过的话,就会明白,周期性的信号是窄带频谱,特定的频率的幅值会很高,这对认证测试来说非常的不利。而一般时钟信号都是周期信号,这在电路中是少不了的。有没有什么办法,改造下时钟的频谱,同时又不影响功能呢?

答案是有的,那就是展频技术

 

展频技术的应用

展频技术经常用于解决辐射问题,比如我们前面说的音频功放,需要接LC滤波器。就有的厂家通过展频技术,推出不需要LC滤波器的IC,比如下面这个。

                   

还有专门的展频时钟芯片,用于降低EMI

那么问题来了,展频怎么就能解决辐射问题呢?

 

如何展频

展频,通常理解,就是将窄带频谱扩展为宽带频谱,让能量不集中到某一个频率点,将能量分散到多个频率点。

我们知道,时钟信号通常都是周期信号,它的频谱就是窄带的,能量集中。要想将它的频谱进行扩宽,那肯定要对时钟信号进行改造,如何改造呢?

原本的时钟信号每个周期都是一样的,周期时间长度也一样,为Tclk。我们可以对其进行微调比如先将每个时钟周期比上一个时钟周期的时间加长一点点,累计n个周期之后,再将每个时钟周期比上一个时钟周期缩短一点点,再累计n个周期,如此循环。

这样时间一定的话,包含总的时钟周期的个数是不变的,但是里面的时钟信号的每个周期都是不一样的,如下图。

从上面的描述可以看到,会有几个参数。

一个是调制速度:就是完成一次循环的时间,也就是2n*Tclk,这个时间的倒数就是调制速度对应的调制频率。

一个是调制深度:调制后,会有最长的时钟周期,也有最短的时钟周期,它们相对原始周期长度有一个差值,这个差值除以原来的时钟周期,就是调制深度,是个百分数。

还有一个是调制方式:前说的是时钟周期长度线性增加或者减小,这种方式叫线性调制方式,线性调制方式如下所示:

在中间虚线位置时,时钟的周期不变,也就是频率不变。在三角波顶端时,时钟周期变到最小,也就是频率变到最大,为f+f

这个三角波的频率就是调制速度,它一般远小于时钟频率,在30Khz-60Khz左右。

调制深度就对应△f,一般实际变化量很小,小于3%

现在我们知道了展频之后的信号是什么样的,那么它真的能将窄带频谱变为宽带频谱吗?我们下面画出它的频谱。

 

展频后的频谱

1、为了减小计算量(量大电脑内存不够用),我们让时钟的频率为1,调制速度为时钟的千分之一,即0.001Hz,调制深度为2%

2、为了更为清楚的看到展频之后的频谱,我们对1Hz基频来个特写。

调制之前1Hz的幅度是0.63,调制之后最高幅度为0.15。如果db来表示,那么就是降低了20log(0.63/0.15)=12.7dB

3、上图对应的是调制深度为2%,我们降低调制深度为1%,再来看看频谱。

调制深度为1%频谱幅度最高为0.2,如果用db来表示,那么就是降低了20log(0.63/0.2)=9.96dB

两者对比,可看到,调制深度越大,频谱越宽,幅度越小,对EMI的抑制作用也就越好。不过呢,调制深度大了,时钟频率变化越大,引起电路时序问题的可能性也就越大。

4、如果调制深度不变,改变调制速度会怎么样呢?

将调制速度从0.001改为0.0001,即降低10倍,调制深度为2%,频谱如下图。

频谱幅度最高为0.05,如果db来表示,那么就是降低了20log(0.63/0.05)=22dB

可以看到,调制速度降低,对EMI的抑制作用越好。不过通常不会低于30Khz,因为20Khz就处于人耳可听到的范围,为了避免产生噪声,不会再低了。

 

小结

      1、 展频技术可以将窄带频谱变成宽带频谱,能够对辐射有抑制作用

      2、调制速度越慢,调制深度越大,抑制效果越好

     上图的中图片,都是使用Matalb画的,如果想自己试着运行一下源码

见附件,就可以得到源码了(需要的人少,所以不直接贴出来了,显得篇幅太长)。


来源:硬件工程师炼成之路

附件

免费源码.txt
电路芯片试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-04-30
最近编辑:1年前
获赞 22粉丝 41文章 179课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈