首页/文章/ 详情

动力电池管理系统(BMS)的核心技术

1年前浏览8246

最近看到国内某企业的宣传牌,因为采用AUTOSAR的软件构架这样的底层软件而声称“全面掌握BMS软硬件技术”、“达到世界先进水平”、“采用多重均衡控制能力”。很能够吸引眼球。这些东西是BMS的核心技术吗?


什么是BMS的核心技术?    

   

BMS系统通常包括检测模块与运算控制模块。



检测是指测量电芯的电压、电流和温度以及电池组的电压,然后将这些信号传给运算模块进行处理发出指令。所以运算控制模块是BMS的大脑。控制模块一般包括硬件、基础软件、运行时环境(RTE)和应用软件。其中最核心的部分——应用软件。对于用Simulink 开发的环境的一般分为两部分:电池状态的估算算法和故障诊断以及保护。状态估算包括SOC(State Of Charge)、SOP(State Of Power)、SOH(Stateof Health)以及均衡和热管理。



电池状态估算通常是估算SOC、SOP和SOH。SOC (荷电状态)简单的说就是电池还剩下多少电;SOC 是BMS中最重要的参数,因为其他一切都是以SOC为基础的,所以它的精度和鲁棒性(也叫纠错能力)极其重要。如果没有精确的SOC,加再多的保护功能也无法使BMS正常工作,因为电池会经常处于被保护状态,更无法延长电池的寿命。


此外,SOC的估算精度也是十分重要的。精度越高,对于相同容量的电池,可以有更高的续航里程。所以,高精度的SOC估算可以有效地降低所需要的电池成本。比如克莱斯勒的菲亚特500e BEV,可以一直放电 SOC=5%。成为当时续航里程最长的电动车。


下图是一个算法鲁棒性的例子。电池是磷酸铁锂电池。它的SOCvs OCV曲线在SOC从70%到95%区间大约只变化2-3mV。而电压传感器的测量误差就有3-4mV。在这种情况下,我们有意让初始SOC有20%的误差,看看算法能不能够把这20%的误差纠正过来。如果没有纠错功能,SOC会按照SOCI的曲线走。算法输出的SOC是CombinedSOC也即是图中的蓝色实线。CalculatedSOC是根据最后的验证结果反推回去的真正SOC。



SOP是下一时刻比如下一个2秒、10秒、30秒以及持续的大电流的时候电池能够提供的最大的放电和被充电的功率。当然,这里面还应该考虑到持续的大电流对保险丝的影响。


SOP的精确估算可以最大限度地提高电池的利用效率。比如在刹车时可以尽量多的吸收回馈的能量而不伤害电池。在加速时可以提供更大的功率获得更大的加速度而不伤害电池。同时也可以保证车在行驶过程中不会因为欠压或者过流保护而失去动力即使是在SOC很低的时候。这么一来,所谓的一级保护二级保护在精确的SOP面前都是过眼云烟。不是说保护不重要。保护永远都是需要的。但是它不可能是BMS的核心技术。对于低温、旧电池以及很低的SOC来说,精确的SOP估算尤其重要。例如对于一组均衡很好的电池包,在比较高的SOC时,彼此间SOC可能相差很小,比如1-2%。但当SOC很低时,会出现某个电芯电压急速下降的情况。这个电芯的电压甚至比其他电池电压低1V多的情况。要保证每一个电芯电压始终不低于电池供应商给出的最低电压,SOP必须精确地估算出下一时刻这个电压急速下降的电芯的最大的输出功率以限制电池的使用从而保护电池。估算SOP的核心是实时在线估算电池的每一个等效阻抗。


SOH 是指电池的健康状态。它包括两部分:安时容量和功率的变化。一般认为:当安时容量衰减20%或者输出功率衰减25%时,电池的寿命就到了。但是,这并不是说车就不能开了。对于纯电动车EV来说安时容量的估算更重要一些因为它与续航里程有直接关系而功率限制只是在低SOC的时候才重要。对于HEV或者PHEV来说,功率的变化更为重要这是因为电池的安时容量比较小,可以提供的功率有限尤其是在低温。对于SOH的要求也是既要高精度也要鲁棒性。而且没有鲁棒性的SOH是没有意义的。精度低于20%,就没有意义。SOH的估算也是基于SOC的估算。所以SOC的算法是算法的核心。电池状态估算算法是BMS的核心。其他的都是为这个算法服务的。所以当有人声称突破了或者掌握了BMS的核心技术,应该问问他到底做了BMS的什么?是算法还是主动均衡或者只做BMS的硬件和底层软件?或者只是提出一种BMS的结构方式?


有人说特斯拉之所以牛,是因为它的BMS可以管理7104节电池。这是它牛的地方吗?它真的是管理7104节电池吗?特斯拉model S确实用了7104节电池,但是串联在一起的只有96节,并联的只能算一节电池不管你并联多少节。为什么?因为其他公司的电池组也是只计算串联的个数而不是并联的个数。特斯拉凭什么要特殊呢?事实上,如果你了解特斯拉的算法,你就会知道特斯拉的算法不仅需要大量的工况数据定标,而且还不能保证在任何情况下尤其是在电池老化以后的估算精度。当然,特斯拉的算法比几乎所有国内的BMS算法还是好很多。国内的BMS算法几乎都是电流积分加开路电压的方法用开路电压计算初始SOC,然后用电流积分计算SOC的变化。问题是如果启始点的电压错了,或者安时容量不准,岂不是要一错到底直到再次充满才能纠正?启始点的电压错会出错吗?经验告诉我们,会的,尽管概率很低。如果要保证万无一失,就不能只靠精确的启始点的电压来保证启始SOC的正确。


中国新能源汽车均衡问题出在哪里?    

   

去年经过专家评选的某主动均衡技术荣获某锂电金球奖。其理由是它的核心技术--主动均衡技术能够延长电池寿命30%续航里程20%。这一看就不靠谱。因为根本无法定量。你和谁比能够延长寿命30%?和自己比有意义吗?和没有均衡比吗?那你的水平就差远了。和别人比,应该与最好的比才有意义。世界上不说最好的至少还可以的BMS都没有均衡问题。你怎么延长寿命30%呀?延长续航里程也是一样的道理。比如克莱斯勒的Fiat500e,它的SOC容许一直放到5%。请问你还怎么延长20%的续航里程呀?再进一步说,主动均衡难吗?硬件2008年TI就向我当时所在的公司推销它的主动均衡IC了。算法不外乎是同模组到电池相互均衡和不同模组之间的电池相互均衡。通用汽车公司早在6-7年前就已经完成了仿真验证。连文章都有了。从算法角度讲完全没有难度可言。而且主动均衡根本也不是网上说的是“主动均衡功能一直以来是国外产品的杀手锏”。


国外为什么基本上不用主动均衡呢?主要是考虑到成本问题。如果被动均衡就能够搞定,为什么要用主动均衡呢?国内为什么极力鼓吹主动均衡呢?笔者认为主要是被动均衡搞不定。说起被动均衡,绝大多数人告诉笔者说是因为国内电池质量太差一致性不好。但是通过交谈笔者发现根本原因在于概念不清、方法不对。要不然怎么会开车时均衡会越均衡越差?均衡的效果是可以计算出来的。所谓多重均衡技术,分明是没有一种手段可以搞定均衡。有人说被动均衡浪费了很多电。所以不好。以96节串联的电池组为例,我们可以算出在最差情况下,被动均衡到底浪费了多少电。如果均衡电流是0.1A,一节电池在被均衡时大约要浪费0.4W。最差的情况是有95节电池都需要放电,所以,最差情况是有0.4X95=38W。还不如汽车的一个大灯(大约45瓦)费电。如果不是最差的情况,也许只要十几瓦甚至几瓦就够了。所以,尽管被动均衡浪费了一点电,但是它如果能够极大地延长电池的寿命,何乐不为呢?还有人说,对于比较大的安时容量的电池来说0.1A电流太小。如果能够把不均衡消灭在萌芽状态,就不会有无能为力情况的出现。如果电芯本身已经不能正常工作了,无论是主动均衡还是被动均衡都是无能为力的。所以,不能完全责怪电池的一致性不好。也需要从自身找原因。


笔者曾经做过的车里有两款PHEV的车,开了才几个月电池组内的SOC相差高达45%。而且由于SOC、SOP的问题,车在路上经常抛锚。公司一致认为是电池质量问题而且一致同意更换电池供应商。但是我仅仅只是更改了算法,就把均衡的问题解决了。而且是在公司明确规定不许充电的情况下做的。因为已经有一辆车由于电池问题出了事故。电池组中电芯SOC的差别由45%降到了3%。现在车已经行驶了十几万公里了。抛锚的问题再也没有发生过。



怎样的算法才算核心技术?    

   

从控制的角度来说,一个好的算法应该有2个标准:准确性和鲁棒性(纠错能力)。精度越高越好的道理在这里就不多说了。前面提到的电流积分加开路电压实际上是用开路电压纠错,但是这种方法与在线实时纠错相比,显然鲁棒性差远了。这是为什么国外大公司都在用在线实时估算开路电压来实现在线实时纠错的原因。


为什么在这里要强调实时在线估算?它的好处在哪里?通过实时在线估算估算出电池的所有等效参数,从而精确地估算出电池组的状态。实时在线估算极大的简化了电池的标定工作。使得对一致性不太好电池组状态的精确控制成为现实。实时在线估算使得无论是新电池还是老化后的电池,都能保持高精度(Accuracy)和超强的纠错能力(Robustness or errorcorrection capability)。


国内一些人往往不知道别人的算法是什么,一看某个厂家为某名厂生产BMS的某些零部件就认为掌握了BMS核心技术,这样说法是欠妥的。那些要花成千上万块钱去买的大部头的出版物评论各个厂家BMS优劣的却不管各个BMS算法或者说在核心技术方面的区别,实际意义太小。只看是不是为某个有名的OEM提供BMS就认为牛,也不知道到底提供BMS里面的什么东西。不知道有没有一种崇洋的心理。


目前世界上BMS做得最好的应该有什么特点呢?它可以在线实时估算电池组的电池参数从而精确估算出电池组的SOC、SOP、SOH,并且能够在短时间内纠正初始SOC超过10%的误差以及超过20%的安时容量的误差或者百分之几的电流测量误差。美国通用汽车公司在6年前研发沃蓝达时就做过一个实验来测试算法的鲁棒性:将3串并联在一起的电池组拿掉一串,这时内阻增加1/3、安时容量减小1/3。但是BMS并不知道。结果是SOC、SOP 在不到1分钟就全部纠正SOH随后也被精确地估算出来。这不仅说明算法的强大的纠错能力,而且说明算法可以在电池的整个生命周期中始终保持估算精度不变。


对于电脑而言,如果出现蓝屏,我们一般只需要重新启动电脑就算了。可是,对于汽车,那怕抛锚的概率只有万分之一也是难以容忍的。所以,与发表文章不同,汽车电子需要保证在任何情况下都能工作。做一个好的算法需要化极大精力去解决那些发生概率只有千分之一、万分之一的情况。只有这样才能保证万无一失。比如说当车高速行驶在盘山公路上,大家所知道电池模型都会失效。这是因为持续的大电流会很快消耗掉电极表面的带电离子,而内部的离子来不及扩散出来,电池电压会急剧下降。估算出SOC会有较大的误差甚至会有10% 以上的误差。精确的数学模型就是数学物理方法教科书上讲的扩散方程。但是它无法用在车上因为数值解的运算量太大。BMS的CPU运算能力不够。这不仅是一个工程难题,也是一个数学和物理的难题。解决这样的技术难题,可以化解已知的几乎所有影响电池状态估算的极化问题。


BMS的状态估算技术才是BMS的核心技术。尽管已经过去了6年,目前世界上仍然没有一家供应商能够做到这样的高精度和高鲁棒的水平来保证电池工作的万无一失。就连现在红的发紫的特斯拉也望尘莫及。这不是在吹牛。特斯拉的粉丝一定听说过特斯拉在北京大街上被拖走的事迹吧。特斯拉的算法也不能保证电池老化后的精度和鲁棒性。只有能够保证高精度、高鲁棒的算法才是杀手锏!没有这样的技术怎么弯道超车?


作者简介

林健,国家千人计划特聘专家。曾服务于福特、通用和克莱斯勒。主要领导了通用沃蓝达BMS、克莱斯勒的两款PHEV和菲亚特500eBMS的开发和量产。获GM 研发创新奖,最有价值员工奖。专利应用于GM所有的在量产的新能源车并获GM最高科技发明奖。


动力电池十强榜单    

   
01    


惠州比亚迪——行业龙头    

成立时间:2006年 总部:广东惠州


惠州比亚迪电池有限公司(以下简称“公司”)成立于2006年,是比亚迪股份有限公司旗下的子公司。其主要产品是方形磷酸铁锂动力电池,主要供给比亚迪旗下的秦、E6、K9等新能源汽车。


随着比亚迪新能源汽车销量的快速攀升,比亚迪电池产能已经出现供应紧张。比亚迪在惠州动力电池现有产能为1.6GWh/年,为保证新能源汽车订单的及时交付,比亚迪准备进行扩大电池产能的计划。


目前比亚迪正在深圳坑梓基地规划6GWh/年产量的电池工厂,该工厂一期工程将于2014年9月份后逐步投产,年内至少新增产能1.5GWh。


02    


CATL——顶尖技术    

成立时间:2011年 总部:福建宁德


宁德时代新能源科技有限公司(CATL)成立于2011年,原为新能源科技集团(ATL)的动力电池分部,时代新能源(CATL)CEO曾毓群同时兼任新能源科技集团(ATL)总裁。2012年,以宁德为总部的时代新能源合资合作项目之一青海时代新能源科技有限公司在青海省西宁市注册成功,公司注资1亿元,主要从事动力锂电池、储能锂电池等高新技术产品的研发、制造和销售。


CATL现在宁德动力锂电池年产能为3.8亿Wh。同时青海时代新能源项目正在建设当中,青海项目一期工程规划产能为年产15亿Wh,其中4.6亿Wh已经于近期投产,而整个一期工程将于2016年底完工。青海时代项目整体完工后,可年产50亿Wh电池以及5万吨锂电池正极材料,预计整个建设周期为10年。


CATL动力电池的主要合作客户是宇通、宝马、一汽等。


03    


力神——实力雄厚    

成立时间:1997年 总部:天津


天津力神电池股份有限公司创立于1997年,大股东中海油新能源投资有限责任公司是中国海洋石油总公司直属的全资二级子公司。天津力神的动力锂电池公司前身是力神迈尔斯动力电池系统有限公司,力神迈尔斯成立于2009年,注册资本为1亿美元,股东为天津力神电池股份有限公司和美国CODA电动车公司,属于中外合资企业。后来美国CODA于2013年破产倒闭,现在力神迈尔斯已经由天津力神全资控股。


公司现有动力电池产能约为1.5亿AH,目前正在天津、武汉和青岛三处扩建产能。天津基地计划从1.5亿AH扩建至3亿AH,预计2014年内能投产。同时在武汉和青岛都有新工厂正在建设,武汉和青岛预计要到2015年中投产。


公司动力电池的主要合作客户是天津公交集团、宇通、东风扬子江、一汽客车、康迪、江淮汽车等。


04    


国轩——区域龙头    

成立时间:2005年 总部:安徽合肥


合肥国轩高科动力能源有限公司(下称“国轩”)成立于2005年, 是由珠海国轩贸易有限公司和合肥国轩营销策划有限公司发起设立。其主要产品是磷酸铁锂动力电池。


国轩曾于2012年11月完成股份制改革,但随着2013年IPO关闸以及证 监 会目前暂停接受IPO申报材料,其 IPO计划最终搁浅。目前有消息称,国轩正在筹划借壳上市。


国轩现有约为3.5亿AH方形动力电池产能,其中2亿AH新增产能于今年5月在合肥投产。昆山正在新建圆柱动力电池产能,单体5AH,预计明年上半年投产。福建正在筹划建设动力电池PACK厂。


公司动力电池的主要合作客户是安凯、江淮、金龙、申沃、新大洋等。


05    


沃特玛——老牌劲旅    

成立时间:2002年 总部:广东深圳


深圳市沃特玛电池有限公司成立于2002年。公司现有员工1300余人,研发人员300余人,现日产32650型5Ah电芯22万支,新厂区规划产能为日产32650型5Ah电芯50万支,是国内最早成功研发磷酸铁锂新能源汽车动力电池,并率先实现规模化生产和批量应用的磷酸铁锂电池企业之一。


公司动力电池的主要合作客户是五洲龙、金龙、扬州亚星、郑州海马、中联重科等。


06    


万向——布局深远    

成立时间:2011年 总部:浙江杭州


浙江万向亿能动力电池有限公司是由万向集团与美国Ener1 Inc.于2011年7月份投资设立的中外合资企业,注册资本为1.2亿美元,主营业务为锂离子电池及由动力电池组装的锂离子电池系统的设计、服务及技术升级。万向亿能动力专利技术来自于美国Ener1公司,使用的是Ener1的自动电池组组装技术。


2011年11月,公司开始建设年产3亿AH锂离子动力电池项目,一期产能1.2亿AH已经投产,二期1.8亿AH正在建设当中。


公司动力电池的主要合作客户是康迪、众泰、万向电动车、国家电网等。


07    


威能——山东诸侯    

成立时间:2006年 总部:山东寿光


山东威能环保电源有限公司成立于2006年,是山东威能环保电源(集团)有限公司旗下子公司。山东威能环保集团有山东威能环保电源有限公司、青岛威能电动车辆电控有限公司、青岛隔膜新材料有限公司、北京五和动力科技有限公司、昆山威能环保电源有限公司五个分公司。


公司主要生产采用的电池单体是16AH、36AH、50AH和100AH等,16AH、36AH主要用在低速车、混动客车和乘用车,而50AH和100AH主要用在纯电动大巴。公司现有产能约为1.5亿AH。公司动力电池的主要合作客户是申沃、欧辉、中通、南京金龙等。


08    


中航——背景深厚    

成立时间:2009年 总部:河南洛阳


中航锂电(洛阳)有限公司成立于2009年,是中航工业集团公司及所属单位共同投资组建,成飞集成控股的专业从事锂离子动力电池、电池管理系统研发及生产的新能源公司。


公司的主要产品锂离子动力电池, 单体容量覆盖了10AH到500AH,已与国内多家汽车整车厂商建立合作关系。其产品已广泛运用于电动车、机车、储能等民用领域及军用电源等军工领域。公司动力电池的主要合作客户是宇通、东风、奇瑞、康迪、长安福特等。


09    


微宏——特立独行

成立时间:2006年 总部:浙江湖州


微宏动力系统湖州有限公司成立于2006年,是一家有着深厚研发能力的高科技化工与能源产品供应商。公司从事新能源及储电技术产品的研发、生产以及销售,致力于为不同应用领域提供清洁能源解决方案。


公司的优势在于产业链整合,集团公司旗下的子公司已经形成锂电池从材料——电芯——电池组的垂直产业链,包括微宏动力系统(湖州)有限公司、微宏动力解决方案(休斯顿)有限公司,湖州欧美新材料有限公司、湖州欧美化学有限公司及湖州的材料研发中心和应用产品开发基地。公司使用的电解液、隔膜、钛酸锂负极材料都是由集团旗下的子公司自主生产。公司的主要客户是重庆恒通客车。


10    


国能——后起之秀    

成立时间:2012年 总部:北京


北京国能电池科技有限公司成立于2012年,是国能集团控股的下属公司。北京国能锂电池产品以储能和动力电池为主。


公司主要生产的单体电芯主要型号为60AH和100AH,正极材料采用磷酸铁锂和三元材料。其磷酸铁锂电池主要用于储能和电动大巴,而三元电池则主要采用于电动汽车和低速车等。公司正在积极扩产当中,计划2014年年底产能扩张到2亿AH/年以上。公司动力电池主要客户是五洲龙、常隆客车、郑州日产、苏州金龙等。


(来源:盖世汽车新能源)

文章收集整理于网络,如有侵权,请联系小编删除


来源:电力电子技术与新能源
化学燃料电池电源电路电磁兼容通用汽车电力电子MATLAB电源完整性UG新能源Simulink理论电机材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-05-01
最近编辑:1年前
获赞 155粉丝 267文章 2069课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈