首页/文章/ 详情

一文看懂移相全桥的原理及设计

1年前浏览1285

移相全桥简介

  移相全桥(Phase-ShiftingFull-BridgeConverter,简称PSFB),利用功率器件的结电容与变压器的漏感作为谐振元件,使全桥电源的4个开关管依次在零电压下导通(ZerovoltageSwitching,简称ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。

  上图是移相全桥的拓扑图,各个元件的意义如下:

  Vin:输入的直流电源

  T1-T4:4个主开关管,一般是MOSFET或IGBT

  T1,T2称为超前臂开关管,T3,T4称为滞后臂开关管

  C1-C4:4个开关管的寄生电容或外加谐振电容

  D1-D4:4个开关管的寄生二极管或外加续流二极管

  VD1,VD2:电源次级高频整流二极管

  TR:移相全桥电源变压器

  Lp:变压器原边绕组电感量

  Ls1,Ls2:变压器副边电感量

  Lr:变压器原边漏感或原边漏感与外加电感的和

  Lf:移相全桥电源次级输出续流电感

  Cf:移相全桥电源次级输出电容

  RL:移相全桥电源次级负载

  移相全桥工作模态

  因为是做理论分析,所以要将一些器件的特性理想化,具体如下:

  1、假设所有的开关管为理想元件,开通与关断不存在延迟,导通电阻无穷小;开关管的体二极管或者外部的二极管也为理想元件,其开通与关断不存在延迟,正向压降为0。

  2、所有的电感,电容都为理想元件,不存在寄生参数,变压器也为理想变压器,不存在漏感与分布参数的影响,励磁电感无穷大,励磁电流可以忽略,谐振电感是外加的。

  3、超前桥臂与滞后的谐振电容都相等,即C1=C2=Clead,C3=C4=Clag。

  次级续流电感通过匝比折算到初级的电感量LS`远远大于谐振电感的感量Lr即LS=Lr*n2》Lr。

  PSFB一个周期可以分为12中工作模态,其中正负半周期是对应的关系,只不过改变的是电流在桥臂上的流向,下面我们首先来分析这12个工作模态的情况,揭开移相全桥的神秘面纱。

  工作模态一:正半周期功率输出过程

  如上图,此时T1与T4同时导通,T2与T3同时关断,原边电流的流向是T1—Lp—Lk—T4,如图所示。

  此时的输入电压几乎全部降落在图中的A,B两点上,即UAB=Vin,此时AB两点的电感量除了图上标示出的Lp与Lk之外,应该还有次级反射回来的电感LS`(因为此时次级二极管VD1是导通的),即LS`=n2*Lf,由于是按照匝比平方折算回来,所以LS`会比Lk大很多,导致Ip上升缓慢,上升电流△Ip为△Ip=(Vin-n*Uo)*(t1-t0)/(LkLS`)

  Vin-n*UO是谐振电感两端的电压,就是用输入电压减去次级反射回来的电压。

  此过程中,根据变压器的同名端关系,次级二极管VD1导通,VD2关断,变压器原边向负载提供能量,同时给输出电感Lf与输出电容Cf储能。(图中未画出)

  此时,UC2=UC3=UA=UAB=VinUB=0V

  工作模态二:超前臂谐振过程

  如上图,此时超前桥臂上管T1在t1时刻关断,但由于电感两端电流不能突变的特性,变压器原边的电流仍然需要维持原来的方向,故电流被转移到C1与C2中,C1被充电,电压很快会上升到输入电压Vin,而C2开始放电,电压很快就下降到0,即将A点的电位钳位到0V。

  由于次级折算过来的感量LS`远远大于谐振电感的感量Lk,故基本可以认为此是的原边类似一个恒流源,此时的ip基本不变,或下降很小。

  C1两端的电压由下式给出

  Vc1=Ip*(t2-t1)/(C1C3)=Ip*(t2-t1)/2Clead

  C2两端的电压由下式给出

  Vc1=Vin-【Ip*(t2-t1)/2Clead】

  其中Ip是在模态2流过原边电感的电流,在T2时刻C1上的电压很快上升到Vin,C2上的电压很快变成0V,D2开始导通。

  在t2时刻之前,C1充满电,C2放完电,即VC1=VC3=VinVC2=VA=VB=0V

  模态2的时间为△t=t2-t1=2Clead*Vin/Ip

  工作模态三:原边电流正半周期钳位续流过程

  如上图,此时二极管D2已经完全导通续流,将超前臂下管T2两端的电压钳位到0V,此时将T2打开,就实现了超前臂下管T2的ZVS开通;但此时的原边电流仍然是从D2走,而不是T2。

  此时流过原边的电流仍然较大,等与副边电感Lf的电流折算到原边的电流即ip(t)=iLf(t)/n

  此时电流的下降速度跟电感量有关。

  从超前臂T1关断到T2打开这段时间td,称为超前臂死区时间,为保证满足T2的ZVS开通条件,就必须让C3放电到0V,即

  td≥△t=t2-t1=2Clead*Vin/Ip

  此时,UC1=UC3=Vin,UA=UB=UAB=0V

  工作模态四:正半周期滞后臂谐振过程

  如图所示:在T3时刻将滞后臂下管T4关断,在T4关断前,C4两端的电压为0,所以T4是零电压关断。

  由于T4的关断,原边电流ip突然失去通路,但由电感的原理我们知道,原边电流不允许突变,需要维持原来的方向,以一定的速率减少。所以,原边电流ip会对C4充电,使C4两端的电压慢慢往上升,同时抽走C3两端的电荷。

  即ip(t)=I2sinω(t-t3)

  vc4(t)=ZpI2sinω(t-t3)

  vc3(t)=Vin-ZpI2sinω(t-t3)

  其中,I2:t3时刻,原边电流下降之后的电流值

  Zp:滞后臂的谐振阻抗,Zp=)0.5

  ω:滞后臂的谐振角频率,ω=1/(2Lr*Clag)0.5

  可能有人会感到奇怪,电流怎么出现了正弦函数关系呢,没错,因为此时是原边的谐振电感Lr与滞后臂的两个电容C3,C4谐振,其关系就是正弦关系。

  为何我上面提到只有原边的谐振电感Lr参加谐振呢,那么次级的储能电感是否有参加谐振呢?下面我们来分析一下:

  由于滞后臂下管T4的关断,C4慢慢建立起电压,而最终等于电源电压,即UC4=Vin,从图纸上我们可以看到,UC4其实就是B点的电压,C4两端电压的上升就是B点电压由0V慢慢的上升过程,而此时A点电压被钳位到0V,所以这会导致UAB《0V,也就是说这个时候原边绕组的电压已经开始反向。

  由于原边电压的反向,根据同名端的关系,LS1,LS2同时出现下正上负的关系,此时VD2开始导通并流过电流;而由于LS1与Lf的关系,流过LS1与VD1的电流不能马上减少到0,只能慢慢的减少;而且通过VD2的电流也只能慢慢的增加,所以出现了VD1与VD2同时导通的情况,即副边绕组LS1,LS2同时出现了短路。

  而副边绕组的短路,导致Lf反射到原边去的通路被切断,也就是说会导致原边参加谐振的电感量由原来的(Lf*n2Lr)迅速减少到只剩Lr,由于Lr比(Lf*n2Lr)小很多,所以原边电流会迅速减少。

  此时,原边的UAB=ULr=-Vin,UA=0V,UB=Vin

  开关模态五:谐振结束,原边电感向电网馈能

  如图所示,当C4充电到Vin之后,谐振结束,就不再有电流流过C3,C4,转而D3自然导通,原边电流通过D2—Lr—D3向电网馈能,其实能量来源于储存在Lr中的能量,此时原边电流迅速减少,

  ip(t)=Ip4-(t-t4)

  其中Ip4是t4时刻的原边电流值

  在t5时刻减少到0。

  此时T3两端的电压降为0V,只要在这个时间将T3开启,那么T3就达到了零电压开启的效果。

  在这里有几个概念需要介绍下:

  死区时间:超前臂或滞后臂的上下两管,开通或关闭的间隔时间,移相全桥电源每个周期有4个死区时间。

  谐振周期:滞后臂两个管子关断之后到超前臂两个管子开通之前,次级电感通过匝比反射回来的电感与谐振电感之和与各自的谐振电容的2个谐振时间;还有就是超前臂已经开通,滞后臂两个管子换流之前,谐振电感与各自的谐振电容的2个谐振时间。

  移相角度:指的是超前臂上管开通到滞后臂下管的开通的时间间隔或超前臂下管开通到滞后臂上管的开通的时间间隔,再转换成角频率ω

  ω=2∏f=2∏/T.

  对于开关模态5来说,谐振周期一定要小于死区时间,否则就不能达到滞后臂的ZVS效果了。但此时的谐振电感是没有次级电感通过匝比反射回来的,所以只有谐振电感参与了谐振,在设计的时候小心了,谐振电感一定要足够大,否则谐振能量不够的话,原边电流就会畸变。

  在t5时刻,UAB=ULr=-Vin,UA=0V,UB=UC1=Vin

  开关模态六:原边电流从0反向增大

  如图所示,在t5时刻之前,T3已经导通,在t5时刻原边电流ip已经下降到0,由于没有了电流,所以D2,D3自然关断。

  在t5-t6的时间内,副边的二极管D1,D2还是同时导通流过电流,将副边绕组短路,阻断输出电感反射到初级的途径,此时的负载电流还是由次级电感与输出电容提供;同时,由于原边的T2,T3已经导通,原边电流ip流过T3--Lr--T2,又因为Lr很小,所以原边电流ip就会反向急剧增大。

  即ip(t)=-(t-t5)

  在t6时刻,ip达到最大,等于副边的电感电流折算到初级的电流

  即ip(t6)=-ILf(t6)/n

  在这个开关模态,原边电流是不传递能量的,但副边却存在着一个剧烈的换流过程,通过副边二极管VD1的电流迅速减少,VD2的电流迅速增大,在t6时刻,通过VD1的电流减少到0,通过VD2的电流等于电感电流ILf。

  在t6时刻之前,原边的UAB=ULr=-Vin,UA=0V,UB=Vin

  达到t6时刻之后,移相全桥的正半周期工作结束;并开始负半周期工作,其工作原理与正半周期相似,下面来做进一步的分析:

  开关模态七:负半周期功率输出过程

  如上图,此时T2与T3同时导通,T1与T4同时关断,原边电流ip的流向是T3—Lk—Lp—T2,如图所示。

  此时的输入电压几乎全部降落在图中的B,A两点上,即UAB=-Vin,此时AB两点的电感量除了图上标示出的Lp与Lk之外,应该还有次级反射回来的电感LS`(因为此时次级二极管VD2是导通的),即LS`=n2*Lf,由于是按照匝比平方折算回来,所以LS`会比Lk大很多,导致Ip上升缓慢,上升电流△Ip为-△Ip=-【(Vin-n*Uo)*(t7-t6)/(LkLS`)】

  此过程中,根据变压器的同名端关系,次级二极管VD2导通,VD1关断,变压器原边向负载提供能量,同时给输出电感Lf与输出电容Cf储能。(图中未画出)

  此时,UC1=UC4=UB=VinUAB=-VinUA=0V

  开关模态八:负半周期超前臂谐振过程

  如上图,此时超前桥臂下管T2在t7时刻关断,但由于电感两端电流不能突变的特性,变压器原边的电流仍然需要维持原来的方向,故电流被转移到C1与C2中,C2被充电,电压很快会上升到输入电压Vin,而C1的电荷很快就被抽走,C1两端电压很快就下降到0V,即将A点的电位钳位到Vin。

  由于次级折算过来的感量LS`远远大于谐振电感的感量Lk,故基本可以认为此是的原边类似一个恒流源,此时的ip基本不变,或下降很小。

  C2两端的电压由下式给出

  Vc2=︱-Ip︱*(t8-t7)/(C1C2)=Ip*(t8-t7)/2Clead

  C1两端的电压由下式给出

  Vc1=Vin-【︱-Ip︱*(t8-t7)/2Clead】

  其中Ip是在模态8流过原边电感的电流,在t8时刻之前,C2上的电压很快上升到Vin,C1上的电压很快变成0V,D1开始导通。

  在t8时刻之前,C2充满电,C1放完电,即VC2=VC4=VA=VB=VinVC1=VAB=0V

  模态8的时间为

  △t=t8-t7=2Clead*Vin/Ip

  注意:此△t时间要小于死区时间,否则将影响ZVS效果。

  第4、8种工作模式分别是滞后臂与超前臂的谐振模式,稍后上详细的分析过程

  开关模态九:原边电流负半周期钳位续流过程

  如上图,在t8时刻二极管D1已经完全导通续流,将超前臂上管T1两端的电压钳位到0V,此时将T1打开,就实现了超前臂上管T1的ZVS开通;但此时的原边电流仍然是从D1走,而不是T1。

  此时流过原边的电流仍然较大,等与副边电感Lf的电流折算到原边的电流即ip(t)=iLf(t)/n

  此时电流的下降速度跟副边电感的电感量有关。

  从超前臂T2关断到T1打开这段时间td,称为超前臂死区时间,为保证满足T1的ZVS开通条件,就必须让C1放电到0V,即

  td≥△t=t9-t8=2Clead*Vin/Ip

  此时,UC2=UC4=UA=UB=Vin,UAB=0V

  开关模态十:负半周期滞后臂谐振过程

  如图所示:在T9时刻将滞后臂上管T3关断,在T3关断前,C3两端的电压为0,所以T3属于零电压关断。

  由于T3的关断,原边电流ip突然失去通路,但由电感的原理我们知道,原边电流不允许突变,需要维持原来的方向,以一定的速率减少。所以,原边电流ip会对C3充电,使C3两端的电压慢慢往上升,同时C4开始放电。即ip(t)=-I2sinω(t-t9)

  vc3(t)=Zp*︱-I2︱sinω(t-t9)

  vc4(t)=Vin-Zp*︱-I2︱sinω(t-t9)

  其中,-I2:t9时刻,原边电流下降之后的电流值

  Zp:滞后臂的谐振阻抗,Zp=)0.5

  ω:滞后臂的谐振角频率,ω=1/(2Lr*Clag)0.5

  同理,原边的谐振电感Lr与滞后臂的两个电容C3,C4谐振,其电压与电流的关系就是正弦关系。

  同开关模态四分析一样的道理,由于原边电压的反向,根据同名端的关系,LS1,LS2同时出现上正下负的关系,此时VD1开始导通并流过电流;而由于LS2与Lf的关系,流过LS2与VD2的电流不能马上减少到0,只能慢慢的减少;而且通过VD1的电流也只能慢慢的增加,所以出现了VD1与VD2同时导通的情况,即副边绕组LS1,LS2同时出现了短路。

  而副边绕组的短路,导致Lf反射到原边去的通路被切断,也就是说会导致原边参加谐振的电感量由原来的(Lf*n2Lr)迅速减少到只剩Lr,由于Lr比(Lf*n2Lr)小很多,所以原边电流会迅速减少。

  在t10时刻,原边的UAB=ULr=Vin,UB=UC4=0V,UA=UC2=UC3=Vin

  开关模态十一:谐振结束,原边电感向电网馈能

  如图所示,当C3充电到Vin之后,谐振结束,就不再有电流流过C3,C4,转而D4自然导通,原边电流通过D4—Lr—D1向电网馈能,其能量来源于储存在Lr中的能量,此时原边电流迅速减少,

  ip(t)=-【Ip10-(t-t10)】

  其中Ip10是t10时刻的原边电流值

  在t11时刻减少到0。

  此时T4两端的电压降为0V,只要在这个时间将T4开启,那么T4就达到了零电压开启的效果。

  对于开关模态11来说,谐振周期一定要小于死区时间,否则就不能达到滞后臂的ZVS效果了。但此时的谐振电感是没有次级电感通过匝比反射回来的,所以只有谐振电感参与了谐振,在设计的时候小心了,谐振电感一定要足够大,否则谐振能量不够的话,原边电流就会畸变。

  在t11时刻,UAB=ULr=UC3=UA=Vin,UB=0V

  开关模态十二:原边电流从0正向增大

  如图所示,在t11时刻之前,T4已经导通,在t11时刻原边电流ip已经上升到0,由于没有了电流,所以D1,D4自然关断。

  在t11-t12的时间内,副边的二极管D1,D2还是同时导通流过电流,将副边绕组短路,阻断输出电感反射到初级的途径,此时的负载电流还是由次级电感与输出电容提供;同时,由于原边的T1,T4已经导通,原边电流ip流过T1--Lr—T4,又因为Lr很小,所以原边电流ip就会正向急剧增大。

  即ip(t)=-(t-t11)

  在t12时刻,ip达到最大,等于副边的电感电流折算到初级的电流

  即ip(t12)=-ILf(t12)/n

  在这个开关模态,原边电流是不传递能量的,但副边却存在着一个剧烈的换流过程,通过副边二极管VD2的电流迅速减少,VD1的电流迅速增大,在t12时刻,通过VD2的电流减少到0,通过VD1的电流等于电感电流ILf。

  在t12时刻,原边的UAB=ULr=UA=UC3=Vin,UB=0V

  至此,一个完整的移相全桥工作周期分析已经完成。

  其中有一些地方可能有点小小错误(欢迎指正),但不影响总体的工作原理分析12个工作模态我先用用图纸的方式呈现出来了,为了便于分析,我省略了次级绕组的回路分析

  12个工作过程包括:2个正负半周期的功率输出过程,2个正负半周期的钳位续流过程,4个谐振过程(包括2个桥臂的谐振过程与2个换流过程),2个原边电感储能返回电网过程,最后还有2个变压器原边电流上冲或下冲过零结束急变过程。这12个过程就构成了移相全桥的一个完整的工作周期,只要有任何一个过程发生偏离或异常,将会影响到移相全桥的ZVS效果,甚至会导致整个电源不能正常工作。

  移相全桥ZVS变换器的原理与设计

  1、准谐振开关电源的组成

  ZVS准谐振高频开关电源是一个完整的闭环系统,它包括主电路、控制电路及CPU通讯和保护电路,如图1所示。

  从图1可以看出准谐振开关电源的组成与传统PWM开关电源的结构极其相似,不同的是它在DC/DC变换电路中采用了软开关技术,即准谐振变换器(QRC)。它是在PWM型开关变换器基础上适当地加上谐振电感和谐振电容而形成的,由于运行中,工作在谐振状态的时间只占开关周期的一部分,其余时间都是运行在非谐振状态,所以称为“准谐振”变换器。准揩振变换器又分为两种,一种是零电流开关(ZCS),一种是零电压开关(ZVS),零电流开关准谐振变换器的特点是保证运行中的开关管在断开信号到来之前,管中电流下降到零。零电压开关准谐振的特点是保证运行中的开关管在开通信号到来之前,管子两端的电压已经下降到零。

  2、零电压准谐振变换器的工作原理

  全桥零电压准谐振变换器的主电路如图2所示。Uin为PFC电路输出的直流电压(400V),S1~S4为功率开关管,其体二极管为D1~D4,图中未画出其体电容C1~C4,Lr为变压器T1初级串联谐振电感,(包括变压器的漏感),C为防止变压器因偏磁而饱和的隔直电容,T2为电流互感器,用于检测。当变换器过流时,保护电路切断驱动信号,保护功率器件。变压器次级电压经过D5、D6整流和输出LC滤波器给负载供电。图3给出了变压器初级电压UP、次级电压US和初级电流ip的波形图。ZVS变换器一周期内可分为六个运行模式,如表1所示。图3中设t《t0时,变换器工作状态为S1和S4导通。

  3、占空比分析

  由波形图可见,由于变换器存在漏电感,使初级电流在t1~t3阶段,有一定斜率,因此次级电压占空比(t4-t3)/(t4-t0)小于初级电压占空比(t4-t1)/(t4-t0),造成占空比损失。开关频率越高,占空比损失越大。

  4、相全桥两桥臂开关管实现ZVS的条件

  由表1和图3可以看出,S3和S4实现ZVS分别早于S1、S2,故称S3、S4为右桥臂又称超前桥臂,S1、S2为左桥臂又称滞后臂。由表1可以看出S3、S4实现ZVS分别在(t0~t1)和(t4~t5),S2、S1实现ZVS分别在(t2~t3)和(t6~t7)。而(t2~t3)和(t6~t7)时变压器初级电流分别小于(t0~t1)和(t4~t5)时的初级电流,故滞后桥臂比超前桥臂实现ZVS开关困难,特别是轻载时最为明显。

  从理论上分析,S1、S2实现ZVS开关时,变压器次级处于续流阶段,谐振时由谐振电感释放能量,使谐振电容电压下降到零,从而实现ZVS,此时实现ZVS条件为:电感能量必须大于所有参与谐振的电容能量。即

  LrIp2/2》(4Coss/3+Cxfmr)×U2in

  式中:4Coss/3是考虑MOS管输出电容非线性等效电容值,Cxfmr是变压器绕组的分布电容。由上式可见,滞后桥臂实现ZVS主要靠谐振电感储能,轻载时能量不够大,因此滞后桥臂不易满足ZVS条件。

  S3、S4实现ZVS开关时,变压器处于能量传递阶段。初级电流IP=-Io/n(n为变压器变比),初级等效电感Le=Lr+n2LO。所以根据ZVS条件,电感能量必须大于所有参与谐振的电容能量,应有Le(Io/n)2/2》(4Coss/3+Cxfmr)Uin2。由于Le(Io/n)2/2相当大,故即使轻载时超前桥臂也较容易满足ZVS条件。

  5、移相全桥PWM控制器

  移相全桥PWM控制技术最关键的是器件的导通相位能在0~180°范围内移动,若控制不好,特别是左桥臂或右桥臂的两个开关管同时导通,将导致灾难性的后果。Unitrode公司生产的UC3875能提供0~100%占空比的控制,并且有必要的保护、译码及驱动功能,有四组驱动输出,每组的延时时间可控制,其控制电路如图4所示。E/A+接固定的2.5V电压(VREF=5V,R5、R9为10kΩ),作电压给定信号。E/A-接对应的输出电压和EA+比较,从而控制OUTA~OUTD的相位,最终控制输出压。C/S+接控制信号(如初级过流信号等),当初级过流时,C/S+大于2.5V,UC3875停止输出驱动信号,从而将变换器输出关闭,防止了灾难事故的发生。驱动信号由OUTA~OUTD输出,并经TC4420扩流,由驱动变压器去驱动S1~S4MOS管,其延时时间由UC3875的7脚、15脚外接电阻确定,实际的驱动信号时序如图5所示。


来源:电力电子技术与新能源
非线性燃料电池寄生参数电源电路汽车电力电子MATLAB新能源通信理论电机PFC控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-05-11
最近编辑:1年前
获赞 154粉丝 261文章 2059课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈