SiC产品的发展是迅速的,在光伏,工业电源,汽车等领域逐步渗透,并快速发展。当面对大功率需求的时候,多芯片并联的功率模块设计开始遇到问题,传统的基于Si基的模块设计很多时候并不完全适用于SiC模块的设计。那么SiC模块封装该如何更好的适应应用需求呢?
Easy, EconoPIM, Flow, MiniSKiip 等封装采用针脚出线形式,能很好的满足诸如NPC, Braker, APF, 整流等复杂拓扑或者结构的应用;
PrimePACK, IHV等封装则是在芯片并联的基础上又通过内置母排并联了多个DBC以实现更高的功率。XHP封装其实也是类似上述的大功率模块,差异在于减少了DBC并联,同时优化外部结构利于外部模块级别并联以满足应用端更加灵活的设计需求。
HybridPACK,DCM1000, M653等模块则是典型的汽车级模块,采用少量芯片并联,直接水冷方式以提供功率密度,DCM1000的半桥结构则是为了提供更加灵活的应用设计,Molding的封装形式以及三直流端子的母线设计也可以很好的兼容SiC模块的设计。
后面的Hybrid DSC 封装也包括其他类似的双面冷却模块的设计,虽然外部结构设计复杂,但是可以给应用端提供灵活紧凑的设计,以实现高功率密度。
更快是指SiC的开关速度更快,dv/dt、dt/dt更大。会导致系统杂散电感、分布电容对系统的影响更加显著,对称设计将变得非常重要。
更热意味着芯片可以工作到更高的结温,但是更高的结温对封装要求也更高,硅凝胶如何能工作到超过200℃。新型材料比如硅橡胶是不是可以用于传送模(transfer molding)以满足更高的温度要求?以及更高的工作结温情况下寿命如何保证。
功率循环能力,如何满足想系统要求。铜绑定线或者无绑定线是不是正确的路线。
在很多应用场合,可以发挥体二极管的作用省去反并联二极管。那么上下桥的结构设计是不是可以简化。
由于电流密度更大,对绑定线载流能力要求提高,或者无绑定线。
端子的设计如何来更好的适配。从下图英飞凌论文给出的布局可以看出,三端子的设计对于对称设计以及降低杂散电感是有利的。
功率密度更高的情况下,模块的体积可以变得更小,是否会带来模块封装设计的变化。
从芯片到模块到系统是目前垂直的三个层面。那么未来模块到系统会不会产生一定的融合?比如半集成的模块在系统层面实现完全集成。
说明:本文来源网络;文中观点仅供分享交流,不代表本***立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。