首页/文章/ 详情

从拆解MODEL3看智能电动汽车发展趋势—控制器拆解

1年前浏览655

从拆解MODEL3看智能电动汽车发展趋势—控制器拆解

中信证券研究微 信 公 众 号发表了一篇《从拆解Model 3看智能电动汽车发展趋势》的文章,文中称对特斯拉Model 3的E/E架构、三电、热管理、车身等进行了详细深入地分析,并坚定看好中国智能电动化发展趋势。    
 



据悉,该文摘自其长达94页的研究报告《新能源汽车行业特斯拉系列研究专题:从拆解Model 3看智能电动汽车发展趋势》,该研报拆解篇幅近80页,从Model 3域控制器、线束和连接器、电池、三电与热管理、汽车车身等全方位多个角度对该车型进行深入分析,并与其它品牌进行对比评价。随后在其研报里详细呈现每个部件的特点,包括车身域、座舱域、线束、连接器、电池、电芯、电机、车灯、底盘、热管理系统等等。  
其中关于特斯拉Model 3控制器相关拆解:  


前车身控制器:全车电子电气配电单元以及核心安全ECU连接


前车身控制器位于前舱中,主要负责的功能是前车体元件控制以及主要的配电工作。该控制器离蓄电池比较近,方便取电。其主要负责三类电子电气的配电和控制:1、安全相关:i-booster、ESP车身稳定系统、EPS助力转向、前向毫米波雷达;2、热管理相关:如冷却液泵、五通阀、换热器、冷媒温度压力传感器等;3、前车身其它功能:车头灯、机油泵、雨刮等。除此之外,它还给左右车身控制器供电,这一功能十分重要,因为左右车身控制器随后还将用这两个接口中的能量来驱动各自控制的车身零部件。  



将其拆开来看,具体功能实现方面,需要诸多芯片和电子元件来配合完成。核心的芯片主要完成控制和配电两方面的工作。  
先说控制部分,主要由一颗意法半导体的MCU来执行(图中红框)。此外,由于涉及到冷却液泵、制动液液压阀等各类电机控制,所以板上搭载有安森美的直流电机驱动芯片(图中橙色框M0、M1、M2),这类芯片通常搭配一定数量的大功率MOSFET即可驱动电机。  
配电功能方面,一方面需要实时监测各部件中电流的大小,另一方面也需要根据监测的结果对电流通断和电流大小进行控制。电流监测方面,AMS的双ADC数据采集芯片和电流传感器配套芯片(黄色框AMS中的芯片)可以起到重要作用。  
而要控制电流的状态,一方面是通过MOSFET的开关,另一方面也可以通过HSD芯片(High Side Driver,高边开关),这种芯片可以控制从电源正极流出的电流通断。  
左车身域控制的核心芯片主要也分为控制和配电。核心控制功能使用两颗ST的32位MCU以及一颗TI的32位单片机来实现。左车身的灯具和电机比较多,  
针对灯具类应用,特斯拉选用了一批HSD芯片来进行控制,主要采用英飞凌的BTS系列芯片。  
针对电机类应用,特斯拉则选用了TI的电机控制芯片和安森美的大功率MOSFET。  



右车身控制器与左车身基本对称,接口的布局大体相同,也有一些不同点。右车身域负责超声波雷达以及空调,同时右车身承担的尾部控制功能更多一些,包括后方的高位刹车灯和后机油泵都在此控制。  
具体电路实现方面,由于功能较为相似,电路配置也与左车身较为相似。一个不同点在于右车身信号较多,所以将主控单片机从左车身的ST换成了瑞萨的高端单片机RH850系列。此外由于右车身需要较多的空调控制功能,所以增加了三片英飞凌的半桥驱动器芯片。  


特斯拉model3 2020款采用的是第二代座舱域控制器(MCU2):  
MCU2由两块电路板构成,一块是主板,另一块是固定在主板上的一块小型无线通信电路板(图中粉色框所示)。这一块通信电路板包含了LTE模组、以太网控制芯片、天线接口等,相当于传统汽车中用于对外无线通信的T-box,此次将其集成在MCU中,能够节约空间和成本。我们本次拆解的2020款model3采用了Telit的LTE模组,在2021款以后特斯拉将无线模组供应商切换成移远通信。  
MCU2的主板采用了双面PCB板,正面主要布局各种网络相关芯片,例如Intel和Marvell的以太网芯片,Telit的LTE模组,TI的视频串行器等。正面的另一个重要作用是提供对外接口,如蓝牙/WiFi/LTE的天线接口、摄像头输入输出接口、音频接口、USB接口、以太网接口等。  



而MCU2的背面更为重要,其核心是一颗IntelAtomA3950芯片,搭配总计4GB的Micron内存和同样是Micron提供的64GBeMMC存储芯片。此外还有LGInnotek提供的WiFi/蓝牙模块等。  



3)驾驶域:双FSD芯片,NPU在同等面积下相比Orin有更高的性价比,采用Linux操作系统更适配AI大模型;  
特斯拉的另一个重要特色就是其智能驾驶,这部分功能是通过其自动驾驶域控制器(AP)来执行的。本部分的核心在于特斯拉自主开发的FSD芯片,其余配置则与当前其他自动驾驶控制器方案没有本质区别:  
在model3所用的HW3.0版本的AP中,配备两颗FSD芯片,每颗配置4个三星2GB内存颗粒,单FSD总计8GB,同时每颗FSD配备一片的32GB闪存以及一颗Spansion的64MBNORflash用于启动。网络方面,AP控制器内部包含Marvell的以太网交换机和物理层收发器,此外还有TI的高速CAN收发器。对于自动驾驶来说,定位也十分重要,因此配备了一个Ublox的GPS定位模块。  



为了实现自动驾驶,特斯拉提出了一整套以视觉为基础,以FSD芯片为核心的解决方案:  
其外围传感器主要包含12个超声传感器(Valeo)、8个摄像头(风挡玻璃顶3个前视,B柱2个拍摄侧前方,前翼子板2个后视,车尾1个后视摄像头,以及1个DMS摄像头)、1个毫米波雷达(大陆)。  



其最核心的前视三目摄像头包含中间的主摄像头以及两侧的长焦镜头和广角镜头,形成不同视野范围的搭配,三个摄像头用的是相同的安森美图像传感器。  
毫米波雷达放置于车头处车标附近,包含一块电路板和一块天线板。该毫米波雷达内部采用的是一颗Freescale控制芯片以及一颗TI的稳压电源管理芯片。  



电控域:Model3首创采用48颗SiC MOSFET替代了84颗IGBT,体积、功耗大幅减小;  
据中信证券,Model3为第一款采用全SiC功率模块电机控制器的纯电动汽车,开创SiC应用的先河:  
Model3所用的SiC型号为意法半导体的ST GK026。在相同功率等级下,这款SiC模块采用激光焊接将SiC MOSFET、输入母排和输出三相铜进行连接,封装尺寸也明显小于硅模块,并且开关损耗降低75%。采用SiC模块替代IGBT模块,其系统效率可以提高5%左右,芯片数量及总面积也均有所减少。如果仍采用Model X的IGBT,则需要54-60颗IGBT。  



5)动力域:BMS共管理2976节21700电池,强大的软件能力实现每节电池充放电的一致性。  
Model3作为电动车,电能和电池的管理十分重要,而负责管理电池组的BMS是一个高难度产品:  
主控板负责管理所有BMS相关芯片,共设置7组对外接口,包含了对充电控制器(CP)、能量转换系统(PCS)的控制信号,以及到采样板(BMB)的信号,另外还包含专门的电流电压采集信号。电路板上包含高压隔离电源、采样电路等电路模块。元器件方面,有Freescale和TI的单片机,以及运放、参考电压源、隔离器、数据采样芯片等。  



在BMS的控制下,具体对电池组进行监测的是BMB电路板,对于特斯拉model3而言:  
共有4个电池组,每一组配备一个BMB电路板,并且4个电路板的电路布局各不相同,彼此之间可以很容易地利用电路板上的编号进行区别,并且按照顺序用菊花链连接在一起,在1号板和4号板引出菊花链连接到主控板的P5和P6接口。  


说明:本文来源网络中信证券研究;文中观点仅供分享交流,不代表本***立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

来源:电力电子技术与新能源
燃料电池电源电路电磁兼容半导体汽车电力电子MATLAB新能源芯片电机热设计
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-05-22
最近编辑:1年前
获赞 155粉丝 269文章 2072课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈