首页/文章/ 详情

ANSYS Maxwell2020R1 – What’s New

1年前浏览5906
ANSYS Maxwell
2020R1 – What’s New    
   

New Release Capabilities

1 Element-based Volumetric Harmonic Force Coupling

Maxwell Eddy Current or Maxwell Transient to ANSYS Harmonic Response

•Uses Non-uniform Discrete Fourier Transform to covert to Freq domain for Harmonic Response and Harmonic Acoustics

         
           
New Release Capabilities          

2D Multi-slice Model for Object-based Harmonic Force Coupling

•Quasi-3D effects considered by 2D multi-slice model

•Object based harmonic force

•Harmonic force generated for full 3D mechanical (2D skew model is not supported in mechanical)

       

2D Multi-slice Model for Object-based Harmonic Force Coupling.

   

Enhanced Capabilities

1 Demagnetization Coefficient Plot in 2D and 3D

Demagnetization coefficient definition:

      Demag_coef[%] = Br1/Br0*100%

      Demag_coef = 1, no any demagnetization at the location

      Demag_coef = 0, fully demagnetized at that location

Outputs:

Demag_coef shade plot over all nonlinear permanent magnets

Demag_coef curve with time at specific location using expression cache

Demagnetization percentage statistics curves with time by accounting for all magnet volume associated with Demag_Coef above threshold from 0.1 to 0.9 with step 0.1 respectively (total 9 curves)

         
         

Demagnetization coefficient shade plot

       
         

Demag coefficient at specified location vs time

Demag percentage statistics curve vs time

       

Litz Wire Modeling

Simple conductor considers individual strands

New material composition: Litz Wire

Wire type: Round, Square, Rectangular

Considers additional ohmic loss due to skin and proximity effects

Reports additional loss curve: StrandedLossAC

       
         
         

AC Winding Loss in Machine Toolkit

Stator winding loss:

P_copper=P_dc+P_ac

DC winding loss:      

P_dc=I_rms^2 (R_a+R_b+R_c )

AC winding loss:      

P_dc=3I〗_rms^2 R_ac=3I〗_rms^2 R_ac0 (f/f_0 )^2 (k_ξ/k_ξ0 )

where Rac0 is the user-defined ac-resistance at reference frequency, and

k_ξ=3/2ξ  (sinhξ-sinξ)/(coshξ-cosξ), ξ=a√(πfμ_0 σ)

a is the width/diameter of the winding strand conductor.

Rac0, a, σ, and f0 are inputs in the machine toolkit UI.

Winding loss with dc loss only (Rdc = 0.015 Ω)

         

Winding loss with dc & ac losses (Rac = 0.003 Ω at 60 Hz)

         

New Machine Type: Synchronous Reluctance Machine

The sweeping variables are phase RMS current, angle Gamma and Speed

Auto angle alignment

Periodic and half-periodic TDM supported

DQ-axis component calculation: d-axis rotor has the largest permeance/inductance

       
       

         
       
       
       

Postprocessing Harmonic Force Density in Maxwell 2D/3D Transient

Automatic FFT creates 2D reports: vector or amplitude at specified frequency – phase angle

Harmonic force density reports and plots in Transient time-domain solver

           
           
           
         
   

BETA Capabilities

1 Maxwell 3D Transient - A-Phi formulation [Beta]

Formulated using the A and electric scalar potential φ

The first order edge elements for magnetic vector potential

A and the second order nodal elements for electric scalar potential φ

Multi-terminal conductors support sources of various types on a single conduction path

Partial inductance calculated (not loop) 

J and E fields calculated directly because it is the first order approximation Applicable for bus bar thermal problems where multiple terminals can be excited with arbitrary waveforms and the power loss can be

B=∇×A

B=μH

J=σ(-dA/dt- ∇ φ)

×μ^(-1) ∇×A=-σ dA/dt- σ∇ φ+∇×H_c

∇⋅(-σ dA/dt- σ∇ φ)= 0

Planned for future releases:

External Circuit    
Cosimulation with Simulink    
Displacement (capacitive) effect    
Core loss effect on fields    
Hysteresis effect on fields    
Magnetization/Demagnetization Twin builder cosimulation    
HPC and MPI Motion    
         
       
         
         

Auto Partial Simulation for Full Rotational Machine [Beta]

•Full-model

Pros: easy to setup; better field visualization to understand physics

Cons: very large computation time

•Manually created reduced-model by applying planar master/slave boundary

Pros: much less computation time

Cons: not easy to setup; less intuitive from reduced-model visualization

•Auto partial model creation, meshing, simulation, post-processing with non-planar matching boundary

Preserve and combine all pros eliminating all cons from both full model and reduced model

•Applicable to non-skewed machine model with/without clone mesh [Beta]

             

3 Mechanical Design Type in Electronics Desktop [Beta]

Mechanical Solvers: Modal and Thermal

Supports 2-way coupling with electromagnetics

Integrated UI: Modeler, Scripting, Optimetrics, Post Processing Mesh: AEDT Classic/TAU mesher or mesh linking from Maxwell

Installation and licensing (Icepak solver) in Electronics Desktop

Modal

NG

         
       
       

Thermal

4 Thermal Simulation for Electric Motor Design in AEDT [Beta]

Mechanical Solvers: Modal and Thermal

Supports 2-way coupling with

     
       
       
       
 

上海艾羽信息科技有限公司是一个以CAE软件销售、技术咨询及服务,仿真咨询及规划布局为一体的高科技公司。

作为ANSYS的合作伙伴,艾羽致力于将ANSYS推出的产品,通过业界性能颇佳、颇丰富的工程仿真软件产品组合帮助客户解决复杂的仿真难题。力求与ANSYS一起,共同为中国制造业提供先进的仿真技术,通过仿真技术支撑中国2025。

来源:艾羽科技
MechanicalElectronics DesktopIcepakMaxwellHPCAcoustics
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-04-29
最近编辑:1年前
获赞 14粉丝 52文章 104课程 0
点赞
收藏
未登录
还没有评论

课程
培训
服务
行家

VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈