本文摘要(由AI生成):
本文主要介绍了元器件温度预测的重要性,以及如何实现高保真度元器件温度预测。文章指出,元器件温度预测对于提高可靠性、改善性能和避免运行问题具有重要意义。为了实现高保真度元器件温度预测,设计人员需要为关键元器件明确建模,使用正确的功率估算值,并选择合适的热模型。文章还介绍了双热阻简化热模型、DELPHI模型和详细模型等不同类型的热模型,以及如何使用降阶模型(ROM)提高预测精度。最后,文章强调了西门子热设计软件在元器件温度预测方面的帮助,并介绍了连接Xcelerator Share的机会。
来源丨西门子官网
高级操作指南
元器件温度预测为什么很重要?
元器件温度预测在很多方面都有重要意义。一直以来,元器件温度关系到可靠性,早期研究认为现场故障率与稳态元器件温度相关。近来,基于物理学的可靠性预测将电子组件的故障率与工作周期(开机、关机又开机等)内的温度变化幅度和温度变化率关联起来,而这两个因素均受稳态工作温度的影响。
电子产品出现故障,往往是因为电路板上连接处的焊点年久松动。在某些应用场景中(如计算),性能是关键,温度过高会导致速度越来越慢。在其他场景中,组件必须在非常相似的温度下运行,以避免出现时序问题。高温会导致闭锁等运行问题。无论是要提高可靠性、改善性能,还是要避免运行中出现问题,精确的元器件温度预测都有助于热设计人员达成目标。
借助可靠、精确的元器件温度预测,设计人员可以了解设计值与最大容许* 温度的接近程度。本白 皮 书讨论如何在整个设计流程中实现高保真度元器件温度预测,并提高最终仿真结果的可信度。
* 可能是结温或壳温,在元器件产品说明中指定。
为了准确预测关键元器件的温度,作为热仿真的一部分,应当为元器件明确建模,这可以说是不言而喻的。然而,并非所有元器件都需要建模,而且这样做常常是不切实际的。对热不是特别敏感的低功率密度的小元器件,可以视为热良性,无需以离散方式表示。这些元器件产生的热量可以作为背景热源应用于整个电路板,或者作为电路板上的封装热源。在设计后期,当从 EDA 系统导入已填充的电路板时,Simcenter 提供的筛选选项会自动完成这些操作。
图 1:胰岛素泵的热力模型,其元器件的建模细节程度不一
较大的元器件可能会阻碍气流,因而需要直接表示为三维对象。属于这种情况的一类元器件是电源等所使用的电解电容。它们对热敏感,最高容许温度也较低。对电解电容进行明确建模有助于防止超过最高温度 1。
大型高功率元器件和高功率密度的元器件需要以离散方式建模,因为其热管理和对邻近元器件的影响对产品的整体热设计十分重要。
如上所述,是否有必要表示一个元器件,部分程度上直接取决于其功率密度,即元器件功率除以封装面积。
随着设计的展开并且掌握更多信息后,有必要重新审视应当以离散方式为哪些元器件建模。在设计早期,可能只能使用元器件的最大额定功率来代替其可能功耗的估算值。个别元器件以及整个电路板的功率预算会在设计期间逐步更改,因此需要定期重新检查。
例如,西门子 EDA 的 Xpedition AMS 可用于估算元器件的功率,它将电子电路仿真扩展到标准的时域和频域分析之外,如今还可以实现 Xpedition 电路板设计流程中的高级性能仿真和虚拟系统内验证,包括电热仿真。
图 2:功率与时间曲线示例
白 皮 书《简化PCB 热设计的10大技巧》*中介绍了元器件热模型。元器件热模型的选择取决于多个因素。
在电路板布线之前或尚不知道电路板中层数的早期设计中,精确预测元器件温度是不可能的,因此不需要元器件的精密热模型。随着设计的深入,当 PCB 模型可以优化时,元器件热模型也应当优化。
选择极为合适的元器件热模型是一个迭代过程,因为如果元器件的预测温度很高*,则说明不仅需要优化元器件的热模型,还可能需要考虑元器件专用热管理解决方案。热管理解决方案可以涵盖电路板设计问题,例如通过使用热通孔将热量传导到埋在地下的地平面。
* 在设计早期,“高温”所指的设计安全裕量相当大。
《简化PCB 热设计的10大技巧》讨论了在选择封装之前,要对元器件进行精确建模,并在热设计中使用元器件的三维图。引入了双热阻简化模型和 DELPHI 简化热模型。下面将更详细地讨论这些模型和其他热模型的预测精度。
双热阻模型
如前所述,双热阻简化热模型 (CTM) 是保真度最低的模型,能够预测壳温和结温。使用双热阻模型的一个好处是,除了简单的导热块以外,它不需要任何其他网格,因此对仿真时间无不利影响。虽然其计算量最小,但在最坏情况下,结温预测的误差可能高达 ±30%,而且会因封装类型和尺寸而有所不同。
该模型所基于的结-壳热阻和结-电路板热阻指标是在标准条件下测量的。JEDEC 标准 JESD15-3 要求结-电路板热阻在具有连续电源和接地平面层的 2s2p 电路板上测量。测量结-壳热阻时,需将封装顶部压在冷板上。因此,应用条件与测试条件越接近,双热阻模型的预测精度就越高。对于结-壳热阻,极为接近测试环境的应用环境是当元器件有一个散热器贴附整个封装表面时。因此,双热阻模型可用来初步评估所需散热器的尺寸。
注意,双热阻模型的上表面是一个代表外壳的等温节点,这意味着散热器的基座将维持近等温状态。因此,双热阻模型可用来确定降低散热器空气侧热阻所需的鳍片数量、厚度和高度,但不能确定为了充分散热以确保传递到外部鳍片的热量不会受过度限制的基座厚度。
RC 阶梯模型
对于具有单一热流路径的封装,如 LED 和 TO 式封装,有一种 JEDEC 标准方法3可用于测量从结点至封装调整片的热流路径的热阻-热容模型。注意,这种方法并不直接向封装的裸 露上表面提供热阻。然而,如果能通过某种方式估算该热阻,那么就可以使用 Simcenter Micred T3STER 硬件创建一个考虑这种情况的 RC 阶梯热模型。
Simcenter Micred T3STER 是业界领先的解决方案,可用于测量封装 IC 以创建相应的热模型,从而直接用作 Simcenter Flotherm 中的网络组件。与仅包含热阻的双热阻模型不同,这些模型还包含热容,因此可用于瞬态仿真。当应用环境接近测试冷板环境时,例如将封装焊接到 MCPCB 或高热导率板上的铜焊盘时,这些模型可提供出色的结果。
DELPHI 模型
DELPHI 模型得名于 Flomerics 有限公司在二十世纪 90 年代后期协调开发的 DELPHI 项目。这些模型分割了上下表面,并用一个热阻矩阵将这些表面连接到结点和/或彼此连接。这些附加的内部热阻可根据边界条件调整流经这些封装内部路径的热量。在很多应用中,该模型预测的最坏情况结温精度都在 ±10% 范围内。一般来说,DELPHI 模型足以应付大多数详细热设计工作,但以下情况除外:热特性极为关键的封装,叠层或三维 IC,以及需要通过仿真获得额外信息(例如芯片表面的温度分布)的情况。与双热阻模型一样,它们只包含热阻,所以只能用于稳态模拟。
详细模型
详细模型是以离散方式为封装内部所有热相关特性建模的热模型。注意,这些模型常常包含一定程度的近似,因为个别封装键合线和焊球等特性常常是集总考虑的。然而,此类模型的目的是为了精确反映封装内部的温度分布。使用的几何形状和材料属性正确的话,此类模型可提供极高的保真度。
图 3:芯片封装的详细热模型
对于需要散热器、风扇组件或导热垫等特定热管理解决方案的元器件,应当详细建模以便正确优化散热解决方案。例如,就散热器而言,众所周知,封装内的温度分布会影响散热器内的温度分布,反之亦然。4为此,建议针对此类用途使用详细封装热模型。
详细模型的另一个优点是可以预测焊接互连的温度。热机械剪应力加上温度变化,是影响焊点寿命的主要压力源。
图 4:显示了个别焊球的 BGA 封装下侧的温度分布
BCI-ROM
就预测元器件温度方面,最近的先进技术是使用降阶模型,即 ROM。ROM 现在可独立于边界条件 (BCI) 创建,而不用针对某个特定的热环境5。这就意味着,BCI-ROM 可由封装供应商独立于热环境创建,并提供给最终用户用于模拟特定的热环境。它们的格式有原始矩阵、SPICE、VHDL-AMS 和 FMU。Simcenter 内部有一系列 BCI-ROM 的编创选项。
BCI-ROM 还有其他理想的特征:
它们是高度精确的,创建过程中要明确规定精确度(通常大于 98%)
支持多个热源
支持所有瞬态时间尺度
隐藏敏感 IP,因为从中推导出这些 IP 的母体详细模型的内部几何形状无法从 ROM 中进行逆向工程
报告供应商定义的适当结温,而供应商不必透露该温度在模型中的位置。
比详细模型更快地解决数量级问题6
图 5:PartQuest Explore 中手机关键元器件的 BCI-ROM
这个方法的主要优势是这些模型可以包含在电路模拟器中,比如 Xpedition AMS 和 PartQuest Explore,让电路模拟器可以感知温度,这是设计早期准确估算功率的关键点。
在三维 CFD 模拟器中使用 BCI-ROM 有可能彻底改变封装热模型供应链,而且 BCI-ROM 也可以为整个电路板创建。
实践中,热模型的选择在很大程度上可能取决于供应商提供了哪些信息。Simcenter Flotherm是业界领先的电子散热软件,Simcenter T3STER则被广大半导体公司和封装厂用来鉴定产品特生。Simcenter Flotherm、Simcenter Flotherm PCB 和 Simcenter Flotherm XT 提供的热模型多于任何其他热设计工具,其中包含了很多领先供应商的模型。Simcenter Flotherm PACK 的客户群中大约有 30% 是IC 封装供应商公司的用户。
图 6 : Simcenter Flotherm PACK
参考信息:
电解质电容器的热导率、热特性和温度测量研
https://ieeexplore.ieee.org/document/7749074
简化 PCB 热设计的 10 项提示 — 高级“应用方法”指南,Mentor Graphics 白 皮 书,2014 年 1 月。
JEDEC JESD51-14 “Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction to Case of Semiconductor Devices with Heat Flow through a Single Path(测量单路径热流半导体器件外壳热阻结的瞬态双界面测试方法)”,2010 年 11 月。
https://www.jedec.org/sites/default/files/docs/JESD51-14_1.pdf
Rosten, H.I.和 Viswanath, R.(1994 年),Thermal modelling of the Pentium processor package(Pentium 处理器封装的热建模), 第 44 届电子元器件及技术大会论文集,1994 年,第 421 - 428 页
L. Codecase、V. d’Alessandro、A. Magnani、N. Rinaldi 和 P. Zampardi,“Fast novel thermal analysis simulation tool for integrated circuits (FANTASTIC)(集成电路的五种新式分析仿真工具)”。
https://ieeexplore.ieee.org/document/6972507
Byron Blackmore、Mike Donnelly、Mahmood Alkhenaizi,“Including Electrothermal Effects in Electronics Design withConnected FANTASTIC BCI-ROMs(运用互连 FANTASTIC BCI-ROM,在电子器件设计中包含电热效应)”
https://ieeexplore.ieee.org/document/9406088