如何安静地飞行?
其实抛开前述的安全性问题和疫情影响,在历史上也有很多飞机停飞的先例,比如一项新的民航法规实施后,那些不符合新规的飞机就不得不被摁在地上。而据统计,自从民航组织发布了飞机的地面噪声标准之后,在世界范围内被迫停飞的飞机数量高达数千架之多。降低飞机气动噪声已成为适航取证的必备要求。
而在未来十年内,噪声认证水平将变得更加严格。越来越多的司法管辖区对机场的噪声限制,极大的制约了每小时的飞行次数、作业时间和允许的飞机规模。安静的飞机将减弱这些噪声限制的影响,为航空公司带来新的机会,同时改善机场与周边社区的关系。
飞机上的噪声包括窄频和宽频噪声,主要来源于发动机和机身。由风扇和喷流引起的发动机噪声仍然是起飞时的主要噪声源,但在起落架、缝翼和襟翼等部件引起的噪声也很重要,尤其是降落时更为明显。
来自不同飞机部件的噪声:起落架、襟翼、发动机风扇和喷流
由于微小的几何细节会对飞机的声音特征产生不同的影响,因此准确的噪声预测需要高保真的几何。SIMULIA流体解决方案提供了格子玻尔兹曼的计算流体动力学(CFD)求解器,不仅能够处理全细节的几何,也能够准确模拟湍流引起的噪声以及噪声向地面传播。在过去10年中与NASA的合作验证表明,这种先进的技术比传统的CFD能更准确地预测地面上的噪声特征。
低空飞行的飞机在地面上的感知噪声水平
SIMULIA PowerFLOW是基于格子玻尔兹曼算法的先进计算流体动力学软件。对于一个噪声预测的仿真流程来说,工程师首先通过软件包中的PowerDELTA进行快速的几何处理,然后使用PowerCASE算例设置。利用PowerCASE中的模板可快捷的进行算例设置。然后在PowerFLOW中同时计算飞机周围的气流和由此产生的噪声。接下来,在后处理过程中,工程师可计算出远场噪声分析和有效感知噪声水平(EPNL),并生成波束成形图,以识别和定位噪声源。然后,工程师可以制定优化方案,并根据需要修改几何形状,进行迭代计算分析。
SIMULIA解决方案可以让用户确定噪声源的准确位置,并让用户深入了解设计改型如何影响噪声特性,以及如何在物理模型建立之前对原型机进行最佳优化。除了模拟负责噪声产生的单个部件外,用户还可以分析这些部件在飞机上的相互作用,并生成整架飞机的综合噪声特征。使用SIMULIA流体解决方案来改善起落架和襟翼噪声特性的客户,已经能够在较宽的频率范围内实现3分贝的降低,这相当于噪声强度降低50%。
飞机远场噪声对机场附近环境和人口中心的影响
随着噪声认证水平的提高和机场的噪声限制,飞机制造商将需要使用仿真方法,在设计的早期就能可靠地评估噪声指标。通过使用SIMULIA独特的CFD工具进行气动声学模拟,工程师可以在建造物理原型机之前,准确定位潜在的噪声源并进行设计优化。这将降低飞行测试和认证过程中出现噪声问题的风险,避免了可能发生的工程延误。SIMULIA解决方案助力飞机制造商降低设计成本,并设计出更安静、更具市场竞争力的飞机。