前言
高比能量吸收(SEA)的轻质、高强度超材料在航空航天和汽车领域具有重要应用前景。受柚子皮保护果肉的抗冲击性和功能梯度结构可提高SEA能力的启发,采用软材料(光敏树脂)和硬材料(Ti-6Al-4V)进行3D打印,制备了梯度仿生多面体超材料(GBPM),其SEA超过了前期报道中大多数软材料和硬质材料制造的超材料SEA。
图1 SEA Ashby图与各种现有超材料的对比
Zhi Zhang, Bo Song, Junxiang Fan, Xiaobo Wang, Shuaishuai Wei, Ruxuan Fang, Xinru Zhang, Yusheng Shi. Design and 3D Printing of Graded Bionic Metamaterial Inspired by Pomelo Peel for High Energy Absorption. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023: 100068.
论文亮点
• 提供了一种实现卓越能量吸收的仿生策略。
• 验证了材料对机械响应和比能量吸收的影响。
• 仿生梯度多面体的比能吸收超过了以前的大多数超材料。
论文研究方法
激光选区熔化Ti-6Al-4V粉末及数字光处理光敏树脂制造仿生多面体超材料,扫面电镜观察仿生多面体形貌,准静态压缩仿生多面体超材料,Abaqus动力学显式仿真准静态压缩过程。
论文结果
在压缩试验和数值模拟的指导下,SEA能力的提高与材料无关。在应力-应变曲线中,波动区出现在硬材料制造的仿生多面体超材料(BPMs)中,而在软材料制造的BPMs中不存在,导致软材料制造GBPM的SEA值的增长率比硬材料制造GBPM提高了5.9倍。软材料和硬材料制造的GBPM的SEA值分别为1.89 J/g和44.16 J/g,超过了先前研究中报道的大多数软材料和硬质材料制造的超材料的SEA。
论文结论
2. 提高SEA的梯度设计与所用材料无关。与UBPM相比,GBPM可以实现增强的SEA。在软材料制造的BPMs的断裂阶段没有出现波动区,与硬材料相比,软材料制造GBPM的SEA值的增长率提高了5.9倍。
前景与应用
团队带头人介绍
作者介绍
近年团队发表文章
[1] Junxiang Fan, Lei Zhang, Shuaishuai Wei, Zhi Zhang, Seung-Kyum Choi, Bo Song, Yusheng Shi. A review of additive manufacturing of metamaterials and developing trends, Materials Today, 2021, 50, 303-328.
[2] Lei Zhang, Bo Song, Ruijie Liu, Aiguo Zhao, Jinliang Zhang, Linrong Zhuo, Guiping Tang, Yusheng Shi, Effects of Structural Parameters on the Poisson’s Ratio and Compressive Modulus of 2D Pentamode Structures Fabricated by Selective Laser Melting, Engineering, 2020, 6, 56-67.
[3] Jinliang Zhang, Jianbao Gao, Bo Song, Lijun Zhang, Chanjun Han, Chao Cai, Kun Zhou, Yusheng Shi. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting. Additive Manufacturing. 2021, 38, 101829.
[4] Xiaobo Wang, Lei Zhang, Bo Song, Jinliang Zhang, Junxiang Fan, Zhi Zhang, Quanquan Han, Yusheng Shi, Anisotropic mechanical and mass-transport performance of Ti6Al4V plate-lattice scaffolds prepared by laser powder bed fusion, Acta Biomaterialia, 2022.
[5] Lei Zhang, Bo Song, Lei Yang, Yusheng Shi, Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds, Acta Biomaterialia, 2020, 112, 298-315.
[6] Jinliang Zhang, Bo Song, Lei Yang, Ruijie Liu, Lei Zhang, Yusheng Shi, Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion, Composites Part B, 2020, 202, 108417.
[7] Zhi Zhang, Bo Song, Yonggang Yao, Lei Zhang, Xioabo Wang, Juxiang Fan, Yusheng Shi. Bioinspired, simulation-guided design of polyhedron metamaterial for simultaneously efficient heat dissipation and energy absorption. Advanced Materials Technologies. 2022, 2200076.
[8] Zhi Zhang, Lei Zhang, Bo Song, Yonggang Yao, Yusheng Shi. Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials. Applied Materials Today, 2021, 101268.
[9] Yuanjie Zhang, Bo Song, Jun Ming, QianYan, MinWang, Chao Cai, Cheng Zhang, Yusheng Shi, Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting, Corrosion Science, 2020, 163, 108241.
[10] Qian Yan, Bo Song, Yusheng Shi, Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting, Journal of Materials Science & Technology, 2020, 41, 199-208.