航空燃气涡轮发动机(以下简称发动机)是一个集高温、高速、高压及复杂振动环境于一身的旋转机械产品。如何使一个工作于如此苛刻环境下的高速旋转机械在保证高可靠性、安全性、经济性、舒适性(低噪声与低振动)以及长寿命的同时,还要具有优良的结构效率?答案是必需依赖于航空燃气涡轮发动机强度设计技术。
发动机强度设计技术涉及面广,从整机载荷、整机刚性以及整机振动,到零件的静强度、变形与刚性、稳定性、振动以及寿命,都是发动机强度设计技术必需参与的领域。
因而,作为机械强度设计的一个分支,发动机强度设计是一个费时、耗钱的系统工程,其设计准确性需要大量的、不断提高的设计实践和产品应用作为基础。因此,发动机强度设计技术的成熟与发展与气动、热力学科的发展相比,就更为艰辛漫长。
强度设计技术的核心是对结构在使用环境及载荷作用下的反应客观的认识和准确的预测。用于制造特定结构的材料以及工艺过程直接决定了在特定环境下、在给定载荷作用下特定结构的机械性能,也就决定了特定结构从变形、振动、损伤到机械性能衰退等各种对环境及载荷的反应。当一个零组件完成制造并装配到发动机上后,随使用时间增长其机械性能不断下降,因此,强度设计离不开对材料各种特性的掌握。
设计用材料性能数据对强度设计的影响与制约
要开展民用航空动力装置设计,设计用材料性能数据是否符合要求是一个能否取得适航证必需迈过的第一道坎。
工艺过程控制及制造符合性对强度设计的影响
如果制造过程不能得到有效的控制,强度设计时的假设就与构件/发动机硬件状态不符,设计结果也就不能代表真实状态,意想不到的构件失效就可能发生。
使用载荷及环境
使用载荷及环境是发动机硬件的实际服役环境及服役中承受的工作载荷。就使用环境而言,在海洋环境中使用的发动机,其零件易受到海洋腐蚀环境的影响,在沙漠环境使用的直升机用发动机,易于受到沙砾的冲蚀影响;就飞机用途而言,制空战斗机用发动机、对地攻击战斗轰炸机用发动机、高空侦察机用发动机和运输机用发动机,由于其使用特点不同,发动机的大状态工作时间所占比例、转速循环历程差异也大。
设计用法
因此,这些设计用法和能力要求是随着设计实践的积累不断变化的,不能也不会一成不变。
构件工作载荷的确定制约强度设计的精度及可靠性
在发动机强度设计中,一个容易被忽视的环境因素是阻尼环境。由于发动机叶片及薄壁结构容易出现高周疲劳,要准确地预计构件的振动响应,除了需要准确预计激振力外,还需要对构件的阻尼有准确的预测。典型如整机振动响应分析中,由于静子结构件有较多的连接结构,其结构阻尼较大,支点如果采用了有效的阻尼器,其阻尼也较大,但是转子在做宏观涡动运动时,其结构阻尼就较小,这些都对整机振动响应影响较大。另外,整体叶盘的结构阻尼低,振动响应往往较大。比如某整体铸造涡轮叶盘,由于其结构阻尼低,其振动响应峰值尖,峰值响应大,这是其固有特性,如果设计初期对此认识不足,就容易引起强度设计问题。
强度设计分析技术
随着新材料、新工艺及新结构的应用,构件在环境和使用载荷作用下的损伤行为的深入认识,强度设计分析技术也会不断深化、发展。
新材料新工艺新结构的强度设计技术
发动机结构强度设计技术的发展不仅受到新材料、新结构、新工艺的推动。受到设计分析效率、设计分析对精度的需求驱使,强度设计分析方法自身也在不断创新、完善与提高。
概率设计方法应用
在进行概率结构强度设计分析时,首先必需通过分析、测量、试验及统计等方法和手段获取、掌握影响构件最终可靠性的主要影响因素及其分布特性。其次,必需理解、掌握这些主要影响因素是否相互独立地对构件的最终可靠性产生影响。第三,还必需确定合适的设计分析模型进行结构强度概率设计分析。这里就牵涉到计算量问题,要解决计算量问题,就必需采用合适的计算策略(计算方法)。第四,还需注意建立与概率设计分析方法相匹配的设计分析准则。
多学科综合优化设计
目前多学科综合优化方法已开始在发动机零件设计中应用,未来它将是解决设计分析效率、提高设计质量的重要手段。
结构损伤及新的结构仿真分析方法
在进行概率结构强度设计分析时,首先必须通过分析、测量、试验及统计等方法和手段获取、掌握影响构件最终可靠性的主要影响因素及其分布特性。其次,必须理解、掌握这些主要影响因素是否相互独立地对构件的最终可靠性产生影响。第三,还必须确定合适的设计分析模型进行结构强度概率设计分析。这里就牵涉到计算量问题,要解决计算量问题,就必须采用合适的计算策略(计算方法)。第四,还需注意建立与概率设计分析方法相匹配的设计分析准则。
多学科综合优化设计
目前多学科综合优化方法已开始在发动机零件设计中应用,未来它将是解决设计分析效率、提高设计质量的重要手段。
结构损伤及新的结构仿真分析方法
这些强度设计分析技术的进步,也将推动发动机结构强度设计水平的发展,提高强度设计分析质量。
强度试验及测试技术
强度设计技术的发展、能力的提升,离不开强度试验技术和手段的发展,也离不开有关测试技术和手段的发展。同样地,强度试验技术和测试技术如果落后,也必定制约强度设计技术的发展。
强度试验技术的核心是如何构建与期望的工作环境一致的模拟环境来获取或验证试样、模拟件、真实构件的机械性能特性。强度试验技术也包括试验数据分析处理技术和试验数据与结构分析数据融合技术。为了降低成本、缩短验证周期,获取足够具有代表性的试验验证结果,如何建立高温构件的模拟工作环境来进行高温构件的验证就成为一个关键问题。复合材料构件的大量使用,其验证方法和手段也给强度试验人员提出了挑战。
构件强度试验技术需要发展,整机结构可靠性、安全性及耐久性试验方法及技术也是需要不断改进、发展的重要领域。通过什么样的模拟环境、经过什么样的载荷模拟,发动机整机试验结果可以验证什么结构特性,是整机试验技术研究的重要内容。
强度试验离不开测试,发动机及其构件的工作环境及载荷的确定也离不开测试。发动机中大部分的参数测量与构件工作环境及载荷直接相关。即使是为了评估气动效率的气动热力参数,也是用于分析、确定构件工作环境及载荷的直接参数。
从强度设计角度,叶片高转速(高过载)、耐温能力超过1000℃的动应变测试技术是开发先进涡轮的必备条件。某发动机涡轮叶片如果不是高过载、高温动应变测试技术支持,其故障原因也就难以确定并解决。另外,复杂气冷涡轮叶片的温度场测量,以及温度随时间的变化特性是确定、验证气冷涡轮叶片热载荷的最直接的手段,如果不能进行温度场及其随时间的变化规律测量,则涡轮叶片的热载荷只能借助于模拟冷效试验确定,其精度也会受到严重制约,或者最终只能依赖发动机环境下的考核验证试验来检验强度设计结果。
为了掌握作用在构件上的气动载荷,流场的稳态及脉动参数测量也是提高分析精度必需的基础技术。为了提高构件寿命预测精度,局部应力集中部位的应变场测量技术可以为预测分析提供详细的测试数据。
非接触式振动测量已开始广泛用于试验中,未来随着非接触振动测量技术的发展和信号分析辨识能力的提高,非接触式振动测量将成为发动机健康监视系统的重要组成部分。另外,如果能够开发出构件损伤在线检测方法,强度技术人员不仅可以把它用于检验其理论损伤演化预测分析,还可以把它作为发动机健康监视系统的核心来确保发动机的可靠性、安全性,使结构问题导致的发动机故障降至可以忽略的程度。
结 束 语
发动机强度设计技术直接决定了发动机的可靠性、耐久性、安全性水平,新材料、新结构、新工艺能否用于发动机,往往最后受到强度设计技术的制约。发动机强度设计技术是发动机设计的核心技术。同时,发动机强度设计水平又受到材料性能数据、试验验证数据积累以及测试试验手段等的制约,其发展、提升也是一个漫长的过程,需要在发动机研究与发展的各个阶段予以足够的重视与支持。