首页/文章/ 详情

顶刊长篇综述丨激光粉末床熔合LPBF增材制造多材料结构的最新进展(三):关键技术问题

1年前浏览1204
摘要                              

激光粉末床熔合(LPBF)增材制造在制造具有复杂结构和精细材料布局的金属多材料结构方面取得了进展。本文从界面特性和强化方法、关键技术问题和潜在应用等方面全面回顾了通过LPBF实现的多材料结构的最新成就。首先介绍了多材料结构和审查范围。然后介绍了多材料结构的界面特征(包括LPBF打印的代表性多材料类型、界面微观结构、缺陷等)和强化方法。随后,从设备开发、数据准备、热力学计算和过程模拟以及粉末交叉污染和回收等方面讨论了多材料结构LPBF的关键技术问题。此外,还对其潜在应用(特别是在生物医学、电子和航空航天领域)进行了说明和讨论。最后,展望了未来的研究方向。


                             
01 引言                              
02 界面特征和加固方法                              
2.1  LPBF的多种材料类型                              
2.2  界面微观结构                              
2.3  界面缺陷                              
2.4  界面粘结强化方法                              
顶刊长篇综述丨激光粉末床熔合LPBF增材制造多材料结构的最新进展(一)                              
                             
顶刊长篇综述丨激光粉末床熔合LPBF增材制造多材料结构的最新进展(二)                              
本文小编将主要介绍本篇综述的第三部分,后续将继续介绍综述的其他内容,敬请关注。                              

03 多材料结构LPBF中的关键技术问题

3.1  设备开发                              
3.2  数据准备                              
3.3  热力学计算和过程模拟                              
3.4  粉末交叉污染和回收                              

03

                             

多材料结构LPBF中的关键技术问题

                             

3.1  设备开发

在多材料LPBF工艺中,将不同粉末输送到预定位置至关重要。由于粉末输送系统的限制,现有的LPBF设备几乎设计用于单一材料的打印。已尝试通过手动更换粉末,沿构建方向打印材料变化的多材料结构。对原LPBF设备的粉末输送系统进行改造最有效地实现了异种粉末物理位置的定制变化。                              
Wei和Li(2021)将改良的粉末输送系统分为基于叶片的、基于超声的、“叶片+超声”混合和基于电摄影的粉末撒粉方法。基于叶片的系统可以在构建方向(Z)交付不同的材料,但沿着水平(X/Y)方向将它们沉积在打印层中具有挑战性 (图15(a))。基于超声的系统可以利用超声波振动将不同几何形状的多物料干粉颗粒撒向粉床,但物料分配效率较低(图15(b))。“叶片+超声”混合撒粉系统利用粉末叶片来提高超声辅助LPBF的粉末沉积效率 (图15(c))。基于电子摄影的系统可以利用逐点控制的微气流将粉末颗粒吸引到圆柱形网格上,然后将粉末颗粒吹离网格,沉积在粉末床上,形成一个设计图案 (图15(d))。                              

图15 通过LPBF打印多种材料结构的不同改性粉末进料系统:(a)叶片式,(b)超声波式,(c)‘叶片+超声波’混合,以及(d)电子摄影式。                              
使用基于叶片的方法,Demir和Previti(2017)设计了一个双送粉系统,以修改其现有的LPBF设备,从而能够直接制造沿Z轴(层间分布)材料变化的多材料结构。图16(a–c)显示了多材料LPBF设备中四料斗送粉系统的模型和示意图。四个粉末料斗安装在铺设车上,每个料斗都有一个开关,用于控制四种粉末的层间分布。该系统能够为零件的每个打印层可行地定义特定的工艺参数,这有助于精确优化能量密度和抑制界面处的缺陷。                              

图16 基于刀片法的多材料LPBF设备示意图:(a–c)只能实现层间多材料打印的四料斗送粉系统,(d)采用层内打印法的柔性送粉系统,以及(e)除粉机构。                              
超声振动已被证明可选择性沉积不同的粉末材料。图17(a)显示了带有超声波粉末沉积系统的多材料LPBF原型设备。制造了一个具有层内分布的Cu/H13多材料零件(图17(b)),该零件显示了通过LPBF进行层内打印的多材料结构的巨大潜力。                              

图17 基于超声波方法的多材料LPBF设备示意图:(a)第一个具有超声波粉末沉积系统的原型多材料LPDF设备,(b)具有层内分布的Cu/H13多材料零件,(c)添加原位粉末混合系统,(d)现场粉末混合系统的设计,(e)打印梯度CuSn10/钠钙玻璃样品的表面,以及(f)打印双心形环原型。                              
基于基于超声波的方法,Zhang等人(2020)添加了原位粉末混合系统,以开发新型多材料LPBF机,从而在X/Y/Z方向上精确改变混合粉末的不同比例(图17(c))。现场粉末混合系统中有三个子振动进料系统,两个上部振动进料装置可将两种不同类型的粉末以恒定的粉末流速分配到下部混合箱中(图17d))。图17e)显示了设备打印的CuSn10/钠钙玻璃梯度结构,其中包含从CuSn10到钠钙玻璃的成分变化,包括MMC、过渡相和CMC区域。图17f)显示了打印CuSn10/钠钙玻璃多材料双心形环。然而,基于超声波方法的多材料LPBF设备的特点是效率低。                              
为了提高粉末沉积效率,集成了基于超声波的粉末沉积系统和粉末刀片辅助的LPBF系统,以输送不同的粉末,称为“刀片” + 超声“混合法”。图18(a)和(b)显示了多材料LPBF设备,分别通过逐点微真空和逐点超声波粉末分布将传统粉末铺展系统与选择性材料去除系统集成在一起。在该设备中,构成部件主要部分的粉末材料通过传统的粉末铺展系统铺展,然后使用逐点微真空系统在预定义的局部区域去除未熔化的粉末。最后,通过超声波送粉喷嘴将其他粉末材料输送到空位区域。然而,超声波送粉喷嘴输送的粉末未压实,这导致这些区域的粉末压实密度低,从而在打印过程中形成裂纹和孔隙。开发了一种由气缸驱动的附加板,用于压缩从超声波喷嘴分配的松散粉末,这可以显著增加零件的相对密度。                              

图18 基于“刀片+超声波”混合方法的多材料LPBF示意图:(a)集成了基于超声波的粉末沉积系统和粉末刀片辅助系统的设备,(b)基于超声波的粉体沉积系统的细节,(c)添加了FFF系统,(d)加压系统,和(e)打印316L/PLA多材料微型房屋。                              
“刀片” + 超声波“混合方法”提供了将其他聚合物AM工艺(如熔融灯丝制造,FFF)结合起来以获得金属/聚合物多材料零件中的机械联锁结构的可能性。图18(c)和(d)分别显示了改进设备和增压系统的示意图。在LPBF工艺中打印金属联锁结构(316L)后,通过真空吸盘去除金属联锁结构内残留的松散粉末,并在FFF工艺中用聚合物填充金属联锁结构。加压系统用于将熔融聚合物(PLA)压缩到金属互锁结构中,以在金属和聚合物之间形成机械互锁结构,如图18(e)所示。                              
基于电子摄影法,Aerosint SA公司(比利时)开发了一种基于LPBF的多材料打印机,可以以相对较高的效率打印聚合物、陶瓷和金属粉末(图19(a))。例如,可以基于粉末体素的选择性沉积来打印具有异种材料层内分布的316L SS/CuCrZr多材料零件(图19b)和(c))。粉末分配器是该设备的关键部件,它使用两个鼓形粉末供给系统实现两种不同材料在任何区域的分配。鼓形送粉系统数量的增加使得能够打印更多的材料类型。此外,该系统的非接触粉末铺展可以在脆性材料上打印,而不会产生剪切和摩擦,从而防止打印零件的局部翘曲。                              

图19 基于Aerosint SA开发的基于电子摄影的方法的多材料LPBF设备示意图:(a)选择性粉末重涂示意图,(b)打印工艺,(c)打印316L SS/CuCrZr多材料零件。                              
尽管已经开发了各种多材料LPBF设备用于打印多功能和几何复杂零件,但效率低和粉末交叉污染仍是该设备面临的关键挑战。高效、高质量的粉末输送系统,用于灵活组合和精确分配不同材料,仍然是工业应用的先决条件。                              
3.2  数据准备                              
多材料结构LPBF处理的先决条件之一是创建其3D模型。目前,由于可用商业软件的限制,大多数主流三维模型仅表达零件的几何信息,而不表达零件的材料信息,这可能会阻碍多材料结构的打印。图20显示了多材料的数据准备方法,应通过模型分割、定义和组合进行处理,以获得具有复杂形状的多材料结构。然而,这种方法需要复杂的手动过程,不利于大规模生产和广泛的工业应用。因此,一种能够同时表达几何和材料信息并与制造过程连接的数据接口文件对于多材料结构的设计和制造的集成至关重要。                              
                             
图20 多材料结构的LPBF打印的手动数据准备程序。                              
目前,AM中普遍接受的数据格式包括STL(标准细分语言)、OBJ(对象文件格式)、AMF(附加制造格式)和PLY(多边形文件格式)文件(Loh等人,2018)。STL文件是使用最广泛的数据格式,已成为商用AM设备的标准输入文件,但它无法表达材料信息。STL 2.0是为了表达零件中每个区域的材料信息而开发的。OBJ文件可以表达颜色信息,但仍然无法表达材质信息。AMF文件是美国材料与试验协会(ASTM)为标准化而提出的一种多材料AM数据格式,它可以表达几何和材料信息,但占用大量存储空间。AMF文件仍处于开放共享阶段,应用于多材料结构尚不成熟。PLY文件使用多边形网格来表达零件的表面信息,例如纹理和颜色。                              
一些潜在的文件格式可用于LPBF打印的多材料结构,其可携带关于材料梯度和微尺度物理特性的信息,超出固定的几何描述。FAV格式包括通过体素的物体外部和内部的数字信息,包括其颜色、材料和连接强度,如图21所示。                              

图21(a)显示三维排列体素的概念图,以及(b)FAV格式可以保留内部结构、颜色和材料的信息。                              
LPBF的多材料结构需要一种新的计算建模方法,该方法不仅可以包含几何信息,还可以指定和管理用于局部成分控制的材料信息。新的计算建模方法应该能够控制三维空间中材料的比例和方向性。Richards和Amos(2014)提出了一种使用CPPN(合成模式生成网络)编码的计算方法,以及一种使用NEAT(增强拓扑的神经进化)的可扩展算法,通过笛卡尔坐标的函数通过逐体素描述将多材料信息嵌入到多材料零件中(图22)。为了减少多材质结构体素模型从通用几何格式(即STL文件)转换的计算量,General(2018)提出了一种替代设计支持系统,用体积纹理图表示材质几何拓扑。它允许对体素模型进行修改,然后编译回纹理描述,以在不同的比例下进行更改。因此,函数表示是一种有效的方法,可以为描述具有复杂内部结构的多材料物理对象提供可行的方法。                              

图22 (a)通过对每个像素的X和Y坐标求和生成颜色的简单梯度图案:C,(b)CPPN生成的图案。下式(b)显示了红色值的计算(Richards和Amos 2014)。                              
3.3  热力学计算和过程模拟                              
在多材料LPBF工艺中,了解材料性能的相容性并预测异种材料的行为(界面形态、熔池形状、微观结构演变等),然后快速筛选多材料结构的材料类型和工艺参数至关重要。然而,多材料LPBF中材料性能的相容性和潜在物理行为是与熔体池的热力学和流体动力学、相变、材料热力学等相关的复杂科学问题。此外,高度相容的材料可能具有类似的功能,导致多材料部件的单一功能,这可能无法适应可变的工作环境。目前,界面工艺参数的优化仍然主要是通过大量的试错实验,这可能导致较长的交付周期和较高的成本。                              
数值模拟是了解多材料LPBF过程中潜在物理行为的有效方法(Yao等人,2021)。理解多材料LPBF中界面微观结构的形成机制至关重要。然而,目前使用相场建模和元胞自动机方法进行的微观结构模拟研究主要针对二元合金或三元合金。此外,缺乏混合材料的物理特性是在微观尺度上获得多材料LPBF精确模型的另一个障碍。因此,基于微观方法进行的工作有限。                              
Gu等人(2020年)开发了一个综合建模框架,以预测在介观尺度上的多材料LPBF过程中多轨道、多层和多材料结构的熔池发展(图23(a))。在这个框架中,可以在打印之前探索多种材料结构的粉末材料的各种组合,这为多种材料结构设计和优化提供了有价值的见解。Sun、Chueh和Li(2020)开发了一个中尺度计算流体动力学模型,用于模拟单轨多材料LPBF熔池行为。由于不同材料的不同热物理性质(熔点、激光束吸收率、热导率等),在熔融混合的IN718/CuSn10粉末时观察到不均匀的温度分布。随着CuSn10含量的增加,熔池温度降低。除金属/金属多材料结构外,Chen,Gu等人(2019)提出了一种多层有限元模型,以研究TiB2/Ti6Al4的热行为 V多材料结构,随后的实验证明了模型的有效性(图23(b))。                              

图23 (a)多轨道、多层和多材料LPBF建模框架,以及(b)多材料结构LPBF物理模型示意图。                              
然而,在这些模拟工作中,没有研究不同材料之间界面的三维形态演变。最近,Yao等人(2021)开发了一个多物理模型,该模型将微米级流体动力学与纳秒级热扩散过程相结合,以检查316L和IN718之间界面的三维形貌演变(图24(a))。他们发现,当界面处熔体池的纵横比高于0.25且低于0.55时,可以获得“鱼鳞”形态(图24(b–f))。“鱼鳞”形态有助于在界面处形成机械联锁结构和缠结的弯曲颗粒(图24(f)和(g)),从而提高界面结合强度。                              

图24 (a)单道激光扫描的代表性图像,显示了用于不同观察方向的横截面,(b–e)分别来自横截面a-a、b-b、C-C和D-D的熔体池内流动特性的模拟结果。(f)界面的“鱼鳞”形态,以及(g)沿横截面E-E的代表性元素分布图和微观结构。                              
3.4  粉末交叉污染和回收                              
LPBF设备的开发使得能够根据需要打印具有空间分布的不同材料的多材料结构。然而,粉末交叉污染和打印后不同粉末的回收仍然是需要解决的关键问题。一方面,LPBF的固有特性(例如,基于粉末床)带来了多材料结构打印过程中不可避免的粉末交叉污染问题。在打印一个粉末层之后,需要清除未熔化区域中的粉末;否则,不同粉末的混合物会导致粉末交叉污染。这种混合物可能会破坏精细材料布局并改变多材料结构的功能,这不利于对其性能的精确控制。因此,清洁系统对于多材料LPBF设备有效去除打印层内未经退火的粉末至关重要。此外,还需要设备的粉末预设能力来实现异种粉末的精确预设。                              
另一方面,对于多材料LPBF设备,应考虑不同粉末的回收、分离和再利用,以降低材料成本。如果混合粉末的粒度存在显著差异,可通过筛分进行分离;如果混合粉末具有不同的磁性,可以通过磁吸附分离;如果混合粉末的密度不同,则可通过颗粒惯性进行分离。此外,多材料LPBF设备应避免在打印过程中混合原料粉末。                              
总之,多材料LPBF的关键技术问题集中在设备开发、数据准备、热力学计算和过程模拟以及粉末交叉污染和回收。基于粉末供给系统的改进,开发了各种多材料LPBF设备,包括基于叶片、基于超声波的叶片 + 超声波“混合”和电子摄影技术。这些已开发的LPBF设备可以构建具有层间或层内打印的多材料结构,但都显示出低效率和粉末交叉污染。                              

                             

后续将继续介绍本篇综述的其他内容:

04 潜在应用                              

05 结论与展望

原文:Di Wang, Linqing Liu, Guowei Deng, et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual and Physical Prototyping                              
doi.org/10.1080/17452759.2022.2028343                              

来源:江苏激光产业技术创新战略联盟                              

来源:增材制造硕博联盟

振动通用航空航天电子增材裂纹材料控制试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-03-19
最近编辑:1年前
增材制造博硕联盟
硕士 聚焦增材制造科研与工程应用,致...
获赞 125粉丝 71文章 532课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈