1
研究背景及目的
随着生活水平的提高,口腔医疗成为人们关注的话题。生物陶瓷因具有良好的美学性能、生物相容性等优点受到了临床医生和患者的青睐。随着3D打印技术的不断突破,3D打印开始成为口腔修复领域的热点。然而,目前3D打印制备存在性能差,精度、致密度低的问题,因此制备高精度、致密度以及高性能的全瓷种植体是至关重要的。
2
论文亮点
1.优化了ZrO2(3Y)/Al2O3生物陶瓷的微观组织和性能。
2.采用数字光处理技术制备了综合性能优异、高精度的全瓷种植牙。
3.制备的全瓷牙具有机械强度高(硬度、抗压强度、断裂韧性、抗弯强度、耐磨损性),良好的生物相容性,与传统的工艺相媲美,同时揭示了其内在机理和强化机制。
图1 不同角度ZrO2(3Y)/Al2O3种植体 (a) 坯体;(b) 烧结体
3
试验方法
4
结果
当烧结温度和保温时间分别为1600°C和3h时,ZrO2(3Y)/Al2O3生物陶瓷致密度高达98.79%。其维氏硬度、抗压和抗弯强度以及断裂韧性分别为13.5Gpa,1935MPa,657MPa,6.7MPa×m1/2。满足了口腔全瓷种植牙的力学性能要求。同时,体外模拟口腔环境磨损试验研究表明,人工唾液对ZrO2(3Y)/Al2O3生物陶起到了润滑作用,并且具有良好的耐磨性。ZrO2(3Y)/Al2O3生物陶瓷表面具有合适的粗糙度和良好润湿性。同时,通过将MC3T3-E1、HUVEC细胞与ZrO2(3Y)/Al2O3生物陶瓷进行培养,细胞能够在ZrO2(3Y)/Al2O3生物陶瓷表面粘附并生长良好。ZrO2(3Y)/Al2O3生物陶瓷无细胞毒性,具有良好的生物相容性。
5
结论
随着烧结温度和保温时间的增加,ZrO2(3Y)/Al2O3生物陶瓷的相对密度、显微硬度、抗压和抗弯强度以及断裂韧性先增加后降低。当烧结温度和保温时间分别为1600°C和3h,残余孔隙消除,晶粒得到细化,其相对密度达到98.79%。同时,其维氏硬度、抗弯和抗压强度以及断裂韧性也均达到了最大值。体外模拟口腔环境磨损试验研究表明,人工唾液对其起到了润滑作用,具有良好的耐磨性。同时,ZrO2(3Y)/Al2O3生物陶瓷表面具有合适的粗糙度、良好润湿性及生物相容性。
6
前景与应用
随着3D打印技术的发展,数字化医疗3D打印在口腔种植领域的应用越来越普遍。采用数字光处理技术制备的ZrO2(3Y)/Al2O3生物陶瓷不仅能满足口腔全瓷种植牙的性能要求,而且能保持其良好的生物相容性,在牙科修复中具有广阔的应用前景。
团队带头人介绍
团队研究方向
面向增材制造(宏观)、微纳光子学(微观)和生物医学(介观)领域的国家重大需求开展前沿基础及工程应用研究。
1) 增材制造科学与技术
面向国家重大工程应用、大健康产业开展先进制造技术原理、工艺、装备的基础与应用研究。
2) 微纳光子科学与技术
面向微纳光子学基础科学问题和工程应用,开展激光微纳加工技术、光场调控技术及微纳光子器件研发。
3) 生物医学光子学与工程
围绕激光与生物相互作用,开展介观生物光子学及新型生物检测器件研究。
近年团队发表文章
[1] D Li, W Han, Y Yuan, Y Zhao, J Chen. Tunable optical response based on au@gst core–shell hetero-nanostructures. ACS Appl. Nano Mater, 2021, 4(9), 9123–9131.
[2] Y Ren, P Dong, Y Zeng, T Yang, H Huang, J Chen. Effect of heat treatment on properties of Al-Mg-Sc-Zr alloy printed by selective laser melting. Applied Surface Science, 2022, 574, 151471.
[3] L Sun, P Dong, Y Zeng, J Chen. Fabrication of hollow lattice alumina ceramic with good mechanical properties by Digital Light Processing 3D printing technology. Ceramics International, 2021, 47(18), 26519-26527.
[4] Y Zeng, L Sun, H Yao, J Chen. Fabrication of alumina ceramics with functional gradient structures by
digital light processing 3D printing technology. Ceramics International, 2022, 48(8), 10613-10619.
[5] G Qi, Y Zeng, J Chen, Preparation of porous SnO2-based ceramics with lattice structure by DLP. Ceramics International, 2022, 48(10), 14568-14577.
[6] Z Jiang, L Cheng, Y Zeng, Z Zhang, Y Zhao, P Dong, J Chen. 3D printing of porous scaffolds BaTiO3 piezoelectric ceramics and regulation of their mechanical and electrical properties. Ceramics International, 2022, 48(5), 6477-6487.
[7] S Liu, J Chen, T Chen, Y Zeng. Fabrication of trabecular-like beta-tricalcium phosphate biomimetic scaffolds for bone tissue engineering. Ceramics International, 2021, 47(9), 13187-13198.
[8] J Lu, P Dong, Y Zhao, Y Zhao, Y Zeng. 3D printing of TPMS structural ZnO ceramics with good mechanical properties. Ceramics International, 2021, 47(9), 12897-12905.
[9] Y Zhao, P Li, P Dong, Y Zeng, J Chen. Investigation on 3D printing ZrO2 implant abutment and its fatigue performance simulation. Ceramics International, 2021, 47(1), 1053-1062.
来源:机械工程学报
来源:增材制造硕博联盟