首页/文章/ 详情

南航顾冬冬教授团队丨激光粉末床熔融NiTi合金的形/性-功能一体化调控及电驱动形状回复

1年前浏览4722
                     

前言

近年来,激光粉末床熔融(LPBF)技术在制造NiTi合金功能集成构件方面展现出了巨大潜力。但NiTi合金在LPBF过程中的杂质拾取、易挥发元素烧损及缺陷易发性增加了构件性能/功能退化的风险。此外,NiTi合金基于电-热-机械能转换实现自身形状回复的能力为自回复智能构件设计和制提供了思路。为此,需深入研究LPBF成形NiTi合金形/性及功能一体化工艺调控原理及电驱动条件下变形结构的温度时空分布及回复形状机制。

图1 激光增材制造NiTi合金典型试样及手性晶格结构

论文原文链接:

https://doi.org/10.1016/j.cjmeam.2022.100056

https://www.sciencedirect.com/science/article/pii/S277266572200040X‍

论文引用:                              

Luhao Yuan, Dongdong Gu, Kaijie Lin, He Liu, Jianfeng Sun, Jiankai Yang, Xin Liu, Wei Chen, Yingjie Song. Electrically Actuated Shape Recovery of NiTi Components Processed by Laser Powder Bed Fusion after Regulating the Dimensional Accuracy and Phase Transformation Behavior. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(4): 100056.

论文亮点工作

(1)实现了基于激光工艺参数优化的NiTi合金相对密度、成形精度及相变温度的可控成形;
(2)获得了室温下的高抗拉强度和优异的形状回复率;
(3)揭示了预变形LPBF成形手性点阵结构的电驱动回复机制,实现了96.7%的电驱动形状回复率。

2 激光增材制造电驱动的自回复智能构件一体化成形与功能优化工艺流程                              
                             

图3 手性晶格结构的设计过程

试验研究方法

通过LPBF工艺以预合金化NiTi合金粉末为原料开展NiTi样品工艺优化研究,采用阿基米德排水法测试样品密度,采用差示扫描量热法(DSC)和X射线衍射(XRD)确定NiTi样品的相转变行为,通过电感耦合等离子体光发射光谱法(ICP-OES)进行化学成分分析。根据ISO6892:2009标准,使用万能试验机开展单轴拉伸试验测定拉伸性能,通过拉伸试验和水浴加热测定形状回复效应。通过自主搭建的电驱动形状回复功能测试装置分析结构在回复过程中的温度时空特征和形状回复行为。                              

图4 LPBF成形NiTi合金的工艺调控

论文结果

(1)在高激光功率和低扫描速度区域获得了无明显变形和宏观裂纹的合适加工窗口。
(2)在试样X和Y方向上,测量尺寸随激光功率增加或扫描速度减小而增加。
(3)试样的相转变温度随着扫描速度增加或激光功率减小而降低,且所有试样均由B2奥氏体、B19’马氏体及Ni3Ti组成。
(4)在250 W和1200 mm/s的最佳参数下,可以获得753.28 MPa的拉伸强度和6.81%的延伸率,并获得了88.23%的形状回复率。
(5)采用最佳工艺参数通过激光粉末床熔融(LPBF)成功制备了手性晶格结构;对于预压缩应变为20%的手性晶格结构,获得了96.7%的在电驱动形状回复率。

图5 LPBF成形NiTi合金手性晶格结构电驱动过程的温度变化

论文主要结论

(1)在高激光功率和低扫描速度组合区域易获得较高成形质量的试样,试样的最高致密度为99.65%。
(2)试样尺寸精度受熔池铺展和表面的双重影响,在高激光能量输入条件下,熔池尺寸增加和粉末熔化得更彻底使得测量尺寸大于设计值。
(3)通过工艺优化获得了致密化程度高、成形尺寸精准、相变温度适用、力学性能优异的激光工艺参数(250 W和1200 mm/s)。

(4)采用电驱动可实现LPBF成形NiTi手性晶格结构的形状回复,在电驱动回复初期具有较高的形状回复速度,且电驱动回复率随着驱动电流的提高而增大。

前景与应用

本研究形成的LPBF成形NiTi合金形/性及功能一体化工艺调控方法适用于复杂功能集成构件的近净成形,揭示的电阻热驱动NiTi手性晶格结构形状回复机制及温度-位移响应关系为航空航天变形可回复智能一体化构件设计提供了工艺保障及理论基础。

                             

团队带头人介绍

                             
                             
顾冬冬,教授,南京航空航天大学科学技术研究院副院长、基础科研与人文社科处处长。国家杰出青年科学基金获得者,国家“万人计划”科技创新领军人才,教育部“长江学者奖励计划”青年学者,国家“万人计划”青年拔尖人才,国家优秀青年科学基金获得者,德国Fraunhofer激光技术研究所洪堡学者。主持国家自然科学基金重点项目、国家重点研发计划“增材制造与激光制造”专项课题、装备预研共用技术重点项目、领域基金重点项目、国防基础科研计划、军委科技委基础加强计划、国防科技创新特区项目等20余项。2021年在国际权威期刊《Science》发表第一作者/通讯作者论文“Material-structure-performance integrated laser-metal additive manufacturing”(Science 2021, 372, eabg1487, doi10.1126/science.abg1487);近5年以第一作者/通讯作者发表SCI论文90余篇,9篇论文入选ESI高被引论文,被SCI他引6830次,单篇最高SCI他引1490次。以第一完成人获江苏省科学技术奖一等奖、高等学校科学研究优秀成果奖(自然科学奖)二等奖、德国洪堡基金会Fraunhofer-Bessel研究奖、德国科学基金会Mercator Fellow奖、中国航空学会青年科技奖、空军“创新杯”科技创新大赛优胜奖等。担任美国激光学会会刊Journal of Laser Applications副主编,中国科技期刊卓越行动计划“高起点新刊”CJME: Additive Manufacturing Frontier执行主编,《中国激光》副主编,SCI期刊International Journal of Machine Tools and Manufacture助理主编(负责增材制造方向稿件),Additive Manufacturing、Virtual and Physical Prototyping、Applied Surface Science、Chinese Journal of Mechanical Engineering等SCI期刊编委。                              

团队研究方向

(1)高性能金属构件材料-结构一体化增材制造技术

(2)极端难加工材料与结构增材制造装备与工艺技术

(3)面向增材制造的多功能结构创新设计与优化技术

(4)激光增材制造多尺度多物理场耦合模拟仿真技术

(5)航空航天金属构件增材制造性能评价与验证技术

近年团队发表文章

[1] Dongdong Gu*, Xinyu Shi, Reinhart Poprawe, David L. Bourell, Rossitza Setchi, Jihong Zhu. Material-structure-performance integrated laser-metal additive manufacturing, Science, 372 (2021) eabg1487.

[2] Wei Chen, Dongdong Gu*, Jiankai Yang, Qin Yang, Jie Chen, Xianfeng Shen. Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion, International Journal of Extreme Manufacturing, 4 (4) (2022) 045002.

[3] He Liu, Dongdong Gu*, Jiankai Yang, Keyu Shi, Luhao Yuan. Laser powder bed fusion of node-reinforced hybrid lattice structure inspired by crystal microstructure: Structural feature sensitivity and mechanical performance, Materials Science and Engineering A, 858 (2022) 144048.

[4] Jianfeng Sun, Dongdong Gu*, Kaijie Lin, Luhao Yuan, Jiankai Yang, Wei Chen, Laser powder bed fusion of diatom frustule inspired bionic NiTi lattice structures: compressive behavior and shape memory effect, Smart Materials and Structures, 31 (7) (2022) 074003.

[5] Jiankai Yang, Dongdong Gu*, Kaijie Lin, Luhao Yuan, Meng Guo, Han Zhang, He Liu. Laser powder bed fusion of mechanically efficient helicoidal structure inspired by mantis shrimp, International Journal of Mechanical Sciences, 231 (2022) 107573. 

[6] Lixia Xi, Lili Feng, Dongdong Gu*, Ruiqi Wang, Baran Sarac, Konda Gokuldoss Prashanth, Jurgen Eckert. ZrC plus TiC synergically reinforced metal matrix composites with micro/nanoscale reinforcements prepared by laser powder bed fusion, Journal of Materials Research And Technology-JMR&T, 19 (2022) 4645-4657.

[7] Jiankai Yang, Dongdong Gu*, Kaijie Lin, Yicha Zhang, Meng Guo, Luhao Yuan, Han Zhang, Hongmei Zhang. Laser Additive Manufacturing of Bio-inspired Metallic Structures, Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers 1 (2022) 100013.

[8] Ruiqi Wang, Lixia Xi, Kai Ding, Bilal Goekce, Stephan Barcikowski, Dongdong Gu*, Powder preparation during ball milling and laser additive manufacturing of aluminum matrix nanocomposites: Powder properties, processability and mechanical property, 33 (8) (2022) 103687.

[9] Rui Wang, Dongdong Gu*, Hongmei Zhang, Meng Guo. High temperature oxidation behavior of laser powder bed fusion printed WC/Inconel 718 composites, Journal of Materials Science, 57 (29) (2022) 14119-14134.

[10] Luhao Yuan, Dongdong Gu*, Kaijie Lin, Donghua Dai, Jiankai Yang, Guangjing Huang, Ke Xiong, Laser-Directed Energy Deposition Additive Manufacturing of Nickel-Titanium Coatings: Deposition Morphology, Microstructures, and Mechanical Properties, Advanced Engineering Materials, 21 (2022) 100013.

[11] Lixia Xi, Kai Ding, Han Zhang, Dongdong Gu*. In-situ synthesis of aluminum matrix nanocomposites by selective laser melting of carbon nanotubes modified Al-Mg-Sc-Zr alloys, Journal of Alloys and Compounds, 891 (2022) 2200965.

[12] Rui Wang, Dongdong Gu*, Kaijie Lin, Caiyan Chen, Qing Ge, Deli Li. Multi-material additive manufacturing of a bio-inspired layered ceramic/metal structure: Formation mechanisms and mechanical properties, International Journal of Machine Tools & Manufacture, 175 (2022) 103872. 

[13] Han Zhang, Dongdong Gu*, Donghua Dai. Laser printing path and its influence on molten pool configuration, microstructure and mechanical properties of laser powder bed fusion processed rare earth element modified Al-Mg alloy, Virtual and Physical Prototyping, 17 (2) (2022) 308-328.

[14] Dongdong Gu*, Jiankai Yang, Haoran Wang, Kaijie Lin, Luhao Yuan, Kaiming Hu, Libin Wu. Laser powder bed fusion of bio-inspired reticulated shell structure: Optimization mechanisms of structure, process, and compressive property, CIRP Journal of Manufacturing Science and Technology, 35 (2021) 1-12.

[15] Hongyu Chen, Dongdong Gu*, Liang Deng, Tiwen Lu, Uta Kühn, Konrad Kosiba. Laser additive manufactured high-performance Fe-based composites with unique strengthening structure, Journal of Materials Science & Technology, 89 (2021) 242-252.

[16] Xinyu Shi, Dongdong Gu*, Yanze Li, Donghua Dai, Qing Ge, Yixuan Sun, Hongyu Chen. Thermal behavior and fluid dynamics within molten pool during laser inside additive manufacturing of 316L stainless steel coating on inner surface of steel tube, Optics & Laser Technology, 138 (2021) 106917.

[17] Yanze Li, Dongdong Gu*, Xinyu Shi, Donghua Dai, Qing Ge, Yixuan Sun, Shuhui Li. Influence of environmental constraints and carrier gas velocity on powder concentration and temperature distribution during laser inside additive manufacturing process, CIRP Journal of Manufacturing Science and Technology, 32 (2021) 70-80.

[18] Jiankai Yang; Dongdong Gu*; Kaijie Lin; Libin Wu; Hongmei Zhang; Meng Guo; Luhao Yuan, Laser additive manufacturing of cellular structure with enhanced compressive performance inspired by Al–Si crystalline microstructure, CIRP Journal of Manufacturing Science and Technology, 2021, 32:26-36. 

[19] Qing Ge; Dongdong Gu*; Donghua Dai; Chenglong Ma; Yixuan Sun; Xinyu Shi; Yanze Li; Hongmei Zhang; Hongyu Chen, Mechanisms of laser energy absorption and melting behavior during selective laser melting of titanium-matrix composite: role of ceramic addition, Journal of Physics D: Applied Physics, 2021, 54:115103. 

[20] Hongyu Chen; Dongdong Gu*; Hongmei Zhang; Lixia Xi; Tiwen Lu; Liang Deng; Uta Kühn; Konrad Kosiba, Novel WC-reinforced iron-based composites with excellent mechanical properties synthesized by laser additive manufacturing: Underlying role of reinforcement weight fraction, Journal of Materials Processing Technology, 2021, 289:116959. 

[21] Dongdong Gu*; Jiankai Yang; Kaijie Lin; Chenglong Ma; Luhao Yuan; Hongmei Zhang; Meng Guo; Han Zhang, Compression performance and mechanism of superimposed sine-wave structures fabricated by selective laser melting, Materials & Design, 2021, 198:109291. 

[22] Lixia Xi, Kai Ding, Dongdong Gu*, Shuang Guo, Mengzhen Cao, Jie Zhuang, Kaijie Lin, Ilya Okulov, Baran Sarac, Jürgen Eckert, Konda Gokuldoss Prashanth. Interfacial structure and wear properties of selective laser melted Ti/(TiC+TiN) composites with high content of reinforcements, Journal of Alloys and Compounds, 870 (2021) 159436.

[23] Kaijie Lin, Yamei Fang, Dongdong Gu*, Qing Ge, Jie Zhuang, Lixia Xi. Selective laser melting of graphene reinforced titanium matrix composites: Powder preparation and its formability, Advanced Powder Technology, 32 (2021) 1426-1437.

[24] Hongyu Chen, Dongdong Gu*, Qing Ge, Xinyu Shi, Hongmei Zhang, Rui Wang, Han Zhang, Konrad Kosiba. Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, International Journal of Minerals, Metallurgy and Materials, 28 (2021) 462-474.

[25Dongdong Gu*, Chenglong Ma, Donghua Dai, Jiankai Yang, Kaijie Lin, Hongmei Zhang, Han Zhang. Additively manufacturing-enabled hierarchical NiTi-based shape memory alloys with high strength and toughness, Virtual and Physical Prototyping, 16 (2021) S19-S38. 

来源:增材制造硕博联盟

MechanicalAdditive化学光学航空航天增材裂纹参数优化理论Electric材料多尺度试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-03-19
最近编辑:1年前
增材制造博硕联盟
硕士 聚焦增材制造科研与工程应用,致...
获赞 125粉丝 71文章 536课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈