【摘要】本文就悬置系统匹配问题进行了探讨,并利用 ADAMS 软件建立动力总成悬置系统的仿真模型,利用 iSIGHT 软件集成 ADAMS 软件和 Matlab 软件进行确定性优化设计和可靠性优化设计,从根本上提高了动力总成悬置系统的设计水平和实用性。关键词:动力总成 悬置 解耦 优化 可靠性[Abstract] This paper presents a method applied in the development of an optimized transmission rubber powertrain mount. A system integrated iSIGHT software, ADAMS software, Matlab software is used to reliability design of powertrain mount system.1. 前言发动机工作中产生的不平衡力和力矩与路面不平度激励是汽车振动的主要激励源,合理的动力总成悬置匹配可以减少动力总成的振动向驾驶室的传递,从而提高车辆的行驶舒适性。国内外关于动力总成悬置匹配方面的文献较多。主要分为以下几种方法:系统弹性中心理论、打击中心理论以及模态解耦设计。系统弹性中心理论根据实际工作过程中,在发动机激振力矩作用下,动力总成将绕某一固定的“扭轴”做自由振动(假定不存在弹性及阻尼耦合的情况),当前悬置轴线指向扭轴且后悬置布置在扭轴与曲轴交点的平面内时,动力总成的侧摆模态和其他模态解耦,从而达到减振的目的【1】,但该方法对于缺少明确对称面的动力总成结构的悬置系统应用不方便【2】;打击中心理论将动力总成的前悬置布置在激振力的作用平面内(气缸体的横向中心面处),后支撑布置在打击中心处,使前后悬置的耦合程度降低,这样可以减轻激振力通过后支撑向车身的传递,有效减小汽车的振动;相对而言,利用能量法进行模态解耦设计是目前应用较多的一种方法【3】【4】,动力总成悬置系统能量解耦较之其他方法而言有三个优点:1)可以在原坐标系上对系统进行解耦设计;2)仅需对系统进行自由振动分析求得刚体模态参数,基本脱离了发动机类型及布置形式等具体特点的束缚,因而具有普遍的实用性;3)上述解耦指标总是在(0,1)区间变化,因而可以使优化计算保持较好的数值稳定性。根据文献【5】的研究,子系统在主要激励力作用方向上解耦程度的提高及模态频率的合理安排能使整车振动得到有效控制。本文就悬置系统的匹配进行探讨,对悬置系统的种种约束条件进行详细研究,并利用ADAMS/View 建立动力总成悬置系统的仿真模型;集成ADAMS 软件、iSIGHT 软件和Matlab 软件,并利用 iSIGHT 软件的全局优化方法——多岛遗传算法进行确定性优化设计;在确定性设计的基础上,利用Monte Carlo 分析当悬置主刚度具有很大离散性时系统解耦程度的分布;利用 6Sigma 方法进行可靠性优化,使系统的解耦程度相对于悬置主刚度变化的灵敏度降低,从而保证了模态解耦的设计思想在实际生产过程中的可行。整个过程不仅实现了悬置系统的优化,而且实现了流程的自动化。2. 动力总成悬置系统的确定性优化设计在动力总成悬置系统的确定性优化设计中,假定悬置的三向主刚度的值没有偏差,即不考虑刚度偏差对解耦程度的影响。2.1 动力总成悬置系统的设计目标和约束对于动力总成悬置系统的设计而言,总体的设计思路是:对存在较大激振力的自由度在避开共振的基础上使动力总成悬置在该方向上的刚度小——利于减振;对于没有激振力或激振力小的自由度使动力总成悬置在该方向上的刚度大——利于支撑。按照振动理论,动力总成悬置优化通用的原则如下:1) 动力总成的刚体模态尽量避开人体的最敏感范围;2) 必须保证系统的固有频率小于发动机怠速激振频率的,避免共振;3)悬置静平衡的变形希望有一个合理范围。静变形过大影响橡胶软垫的寿命,而且不利于其他总成的布置;静变形过小意味悬置的刚度过大,不利于减振的需要;4) 极力达到动力总成悬置系统的解耦,尽量使各个自由度的振动互相分离。动力总成悬置系统设计是一个复杂过程,不同的目标之间可能会存在一定的冲突,在设计过程中也很难使所有的目标都达到满足,因此动力总成悬置的匹配过程实质上是各个指标的调和过程。以动力总成质心处坐标系建立的系统刚体自由振动方程:(1)
式中:
为广义座标向量,分别为系统的质量矩阵和刚度矩阵。
根据系统方程(1)可计算出系统的固有振型为。由方程(1)可推倒系统以第 j 阶固有频率振动时第 k 个广义座标分配到的能量所占系统的总能量的百分比为:
从表 1、表 2 可以看出,利用本文提出的方法可以很方便得到动力总成悬置系统的解耦, 由于系统存在偏心并且在优化过程中需要保证左右悬置的刚度相同等因素的影响,因此解耦程度只能逼近 1,即不可能完全解耦。 3. 动力总成悬置系统的可靠性优化设计以上的优化计算都是在假定悬置系统的位置和刚度是完全可控的前提下计算得到的,即不考虑不确定因素对系统解耦程度的影响,但是在实际生产过程中悬置软垫的主刚度是在一个较大的范围内变动的,很难从工艺上保证主刚度的精确程度,因此降低悬置软垫主刚度的变化对于系统解耦程度的影响是一个实际中必须解决的问题。本节首先利用 Monte Carlo 方法分析研究悬置软垫对系统性能的影响程度,然后利用 6Sigma 方法使系统的解耦程度相对于悬置主刚度的灵敏度降低,从而保证了设计思想在实际生产过程中的可行。本文假定动力总成悬置的主刚度满足平均分布,在实际过程中变化范围在10% 。在此基础上进行分析。3.1 确定性优化结果的 Monte Carlo 分析在确定性优化分析中,强制前(后)左右悬置的纵向刚度和横向刚度(4 个变量)相同, 垂向刚度(两个变量)相同,从而简化了实际生产和装配流程。但是在随机分析中须将所有的约束条件放开,模拟现实工况。以四个悬置的 12 个主刚度作为自变量进行 Monte Carlo 分析,观察模态 1(侧倾模态)和模态 2(垂直振动模态)的分布情况。图 5 是进行 Monte Carlo 分析中自变量的分布情况。
图 5 Monte Carlo 分析中自变量的分布图 6 是进行 Monte Carlo 分析得到的模态分布。图中横坐标是解耦程度,纵坐标是仿真的次数,根据 Monte Carlo 分析的定义,出现的仿真次数越多,即认为在实际生产中出现的概率越大。从图中可以看出,由于悬置软垫自身的离散性,系统有解耦程度接近于零的情况出现,特别在 Mod2(垂直振动模态)中解耦程度接近于零的比例很大,图 6 的结果预示着本文在确定性优化过程中得到的优化解没有实际生产的意义。
对比表 2 和表 4 可以看出,系统可靠性优化输出模态均值的解耦程度略低于确定性优化的结果。3.3 可靠性优化结果的 Monte Carlo 分析利用可靠性优化得到的结果进行 Monte Carlo 分析,自变量(悬置主刚度)满足平均分布且与确定性优化结果的 Monte Carlo 分析分布相同。观察模态 1(侧倾模态)和模态 2(垂直振动模态)的分布情况。结果如图 7 所示。
图 7 可靠性优化输出模态Monte Carlo 分析结果从图 7 可以看出,系统的可靠性问题有了很大程度的改善。在悬置主刚度的变化范围内, 系统主要模态的解耦程度一直保持在一个较高的水平。4. 结论本文利用软件集成求解动力总成悬置系统的解耦问题,并且考虑橡胶软垫的主刚度的偏差等因素的影响,利用 6 Sigma 方法进行悬置系统的可靠性优化设计,从 Monte Carlo 分析结果来看,本文提出的设计方法更能满足实际情况,从根本上提高了动力总成悬置系统的设计水平和实用性。参考文献1. The Optimum Layout of Engine Mounting by Dynamic Analysis. Mitsuo Iwahara, Tetsuya Sakai, SAE 1999-01-3717。2. 汽车发动机弹性支撑隔振的解耦方法,徐石安,汽车工程,1995 年(第 17 卷)第 4 期。3. 发动机-置系统的能量法解耦及优化设计,阎红玉,徐石安,汽车工程,1993(第 15) 第 6。4. 汽车动力总成橡胶悬置系统的固有特性和振动耦合特性分析,李杰,公路交通科技, Vol.15 No.4,1998 年 12 月。5. Powertrain Mounting Development Based on Computatinoal Simulation and Experimental Verification Method. Paulo A.G.Zavala, Marcio Goncalves Pinto, Renato Pavanello and Janito Vaqueiro. SAE 2001-01-1509一汽技术中心基础部 秦民 卢炳武 陈广森 赛特达公司 赖宇阳 【免责声明】本公 众 号所刊登的内容、资料等来自于个人总结、技术论坛、文献、软件帮助文档及网络等,对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!