首页/文章/ 详情

七种汽车振动噪声分析方法

1年前浏览1869

   

   

   

一、经典方法

四分之一汽车模型和二分之一汽车模型。在设计初期或者在做模型研究的时候,往往采取这种形式。这种模型一般用来分析汽车最基本的频率和振型特征,也可以用作其他用途,如研究汽车动力特性。概念设计阶段,在知道了汽车基本参数之后,就可以迅速计算出整车的振动特征。应用软件有MATLAB等。


MATLAB是美国MathWorks公司开发的大型数学计算应用软件系统,它提供了强大的矩阵处理和绘图功能,简单易用,可信度高,灵活性好,在世界范围内被科学工作者、工程师以及大学生和研究生广泛使用,目前已经成为国际市场上科学研究和工程应用方面的主导软件。



   

   

   

二、有限元方法

经典方法只适合于分析很低频率的整体模态。如果要考虑整车中各个系和部件的局部振动,以及修改汽车结构设计,上面的方法就无能为力了。汽车是一个弹性结构,整体和局部振动特征都很重要。于是在分析整车低频振动问题和建立模型时,必须考虑到其结构特征和弹性特征。


目前,用得最为广泛的方法是有限元分析。在粗略分析整车各个系统振动特征时,可以建立网格相对粗的模型。当要对整车振动特征进行细致分析时,就必须建立网格非常细的模型。通常这种模型中节点间的距离仅为5mm,一部整车的有限元模型的节点和单元可以达到几百万个甚至上千万。有限元方法是一项非常成熟的分析方法,能够准确的预估整车和各个系统的模态和模态频率,并且能动态演示整车模态。


有限元方法是用有限单元将结构弹性域或空气域离散化,根据力学方程或声波动方程,得到联立代数方程式,通过求解代数方程式得到结构弹性或声传播空气域中的振动和声特性。


有限元法需将结构有限单元离散化。结构划分的单元愈多,自由度也就愈多,计算精度也愈高,但计算时间也愈长。结构划分的单元的振动频率必须高于要计算的整体结构的振动频率,否则单元需进一步划分。单元的划分需与计算精度匹配。有限元分析方法在汽车方面的应用有:汽车零部件有限元分析、悬架结构有限元分析、车架有限元分析、车身有限元分析、轮胎有限元分析、汽车碰撞有限元分析和汽车结构有限元优化设计等。应用软件有ANSYS等。


ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发。


它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer,NASTRAN,Alogor,I-DEAS,AutoCAD等,是现代产品设计中的高级CAD工具之一。


软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。


前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;


分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;


后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。


软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。



   

   

   

三、边界元方法

有限元方法非常适合低频结构振动模拟和分析。有限元方法也可以模拟和分析振动和声的耦合,但对声空间的模拟和分析基本沿用对结构振动的处理方法,常常限于封闭空间。当声空间体积增大,模态密度急剧增大,有限元方法的运算量急剧增大,此时有限元方法有局限性。相比之下,边界元方法对处理结构声辐射、声散射和结构声腔问题有独特的优越性,因而在实际中得到应用。


边界元方法首先需要知道系统边界条件。结构边界条件一般是如下三种之一:


  • 已知结构表面的复声压(Dirichlet边界);

  • 已知机构表面的复振动速度(Neuman边界);

  • 已知结构表面的复阻抗(混合或Robin边界)。


边界元方法需要结构表面的复声压或复振动速度两个物理量之一作为输入,然后根据边界条件计算出结构表面另一物理量。作为输入,结构表面的复声压或复振动速度可以实测得到,也可以通过计算得到。对于结构表面复振动速度的计算,边界元方法常常借用有限元方法。整车结构振动分析使用有限元模型,车内空腔的声场分析使用边界元模型。应用软件有Virtual.Lab等。


Virtual.Lab软件是比利时一家国际著名的振动和声学测试分析软件公司-LMS公司的大型声学计算分析商品软件。该软件在声学计算分析领域中占据国际领先地位,它为噪声控制专业工程技术人员提供了在产品设计开始阶段,预报和解决声学问题,受到一致好评。美国的NASA(国家航空航天中心)、FORD汽车公司、MOTOROLA通讯公司和BOSE音箱公司,国内著名大学、研究所和一些著名的大公司,如哈尔滨工业大学、上海交通大学、西北工业大学、中船总公司第701研究所、第719研究所、上海大众汽车工业公司等都购买了该软件。


其主要功能有:


(1) 声辐射计算

声辐射计算是Virtual.Lab软件最基本的功能。结构振动时会产生声辐射。结构振动可以是实际测得的速度响应数据,或者是由有限元或其他方法计算得到的速度响应数据。Virtual.Lab本身具有振动响应的有限元方法计算功能,也可以从测得的模态数据和给定的激励计算速度响应。Virtual.Lab进一步可以利用这些数据计算结构表面的声压和结构周围的声场分析。


(2) 声散射计算


(3) 空气噪声传递计算:结构-声场耦合系统的响应灵敏度分析


Virtual.Lab的主要应用方向:


Virtual.Lab预测声波的辐射、散射和传递,以及声学载荷引起的声学响应。可计算得到的结果包括:声压,辐射功率,质点速度,声强,板块贡献量,能量密度,声-振灵敏度,纯模态,结构挠度,等等。


为了描述声学媒质,Virtual.Lab利用了最先进的数字方法。它们基于直接和间接边界元方法,或者声学有限元/无限元的声学方程。结构本身用结构有限元模型表达,可以从所有主流结构有限元和网格生成工具导入。所有分析模块都完全集成在核心环境中,支持多模型和三维图形。


SYSNOSIS有强大的集成前、后处理功能,有网格检查和修正工具。后处理可以画彩图,矢量场,变形后的结构,以及XY图线,柱状图和极坐标图,还包括动画显示和声音回放。



   

   

   

四、多体系统动力学方法

多体系统是对某类客观事物的高度抽象和概括,这类系统都具有一个共同的特点,即它们都是通过特定的关节(铰链)将诸多零(部)件-即所谓的“体”联接起来的;因此我们把多体系统定义为以一定的联接方式互相关联起来的多个物体构成的系统,这些物体可以是刚体也可以是柔体。如果多体系统中所有的体均为刚体,则称该系统为多刚体系统;如果多体系统含有一个以上的柔体,则称为柔性多体系统。


多体系统动力学是一般力学学科的一个重要分支,其理论基础为刚体动力学、分析力学、有限元理论、连续介质力学、计算力学、控制理论等。在汽车的应用为:汽车碰撞过程中人体动力学响应仿真计算,悬架系统多体系统动力学等。


应用软件的代表为ADAMS。ADAMS,即机械系统动力学自动分析(AutomaticDynamicAnalysisofMechanicalSystems),该软件是美国MDI公司(MechanicalDynamicsInc.)开发的虚拟样机分析软件。


ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,可以输出位移、速度、加速度和反作用力曲线。ADAMS一方面是虚拟样机分析的应用软件,用户可以运用该软件非常方便地对虚拟机械系统进行静力学、运动学和动力学分析;另一方面,又是虚拟样机分析开发工具,其开放性的程序结构和多种接口,可以成为特殊行业用户进行特殊类型虚拟样机分析的二次开发工具平台。



   

   

   

五、统计能量分析法

统计能量分析是个模型化分析方法,它运用能量流关系式对复合的、谐振的组装结构进行动力特性、振动响应级及声辐射的理论评估,是一种在时间上和空间上的统计特性,这些能量流关系式在组成组装结构的各种耦合的子系统(如板、壳等)之间具有一个简单的热类比。在应用统计能量分析理论时,将车辆划分为若干个子系统,并假定各子系统之间的主要能量流是由于结构共振或声学模态引起的,即统计能量分析通常是关于各个共振振荡器组之间的能量或功率流分析。振动功率损失和功率流动规律可以用水箱模型描述。


统计能量分析作为一种分析方法,其更重要的作用在于列出主要噪声贡献,以及预测不同设计对车内噪声的相对影响。目前,统计能量分析在预测和分析车内空气噪声的应用比较普遍,而预测和分析车内结构噪声却是研究的多,应用的少。其中一个重要局限是在汽车研发初期无法预测结构耦合损耗因子。建立大量的类似结构的耦合损耗因子数据库可以在一定程度上缓和这个局限性,但其工作量大,而且即使有了数据库,可能仍然很难满足车内结构噪声分析的所有需求。另一方面,传递路径分析方法发展很快,逐渐成为分析车内结构噪声的主要方法。应用软件有AutoSEA等。


AutoSEA软件是ESI公司开发的基于统计能量分析(SEA)方法、针对中高频噪声振动分析的结构-声学分析仿真软件。ESI公司一直致力于统计能量分析方法的研究和软件开发,具有强大的技术力量。目前,最新版的AutoSEA2软件全球市场占有率高达95%,应用范围包括:飞机、汽车、船舶内噪声的预估、主要声源及噪声控制措施,船舶及潜艇的外噪声辐射,建筑、空调声环境预测及电子产品等等,使用的公司涉及各行各业,包括汽车(通用、福特、戴克、尼桑、丰田等)、航空航天(NASA、波音、空客、洛克希德-马丁等)、船舶(USNavy、ElectricBoat等)、空调(Carrier、Daikin、Trane等)以及IT(IBM等)。


具有强大的振动噪声分析功能:除了具备常用的振动和声学特性计算功能外,还具有SHOCK、FOAM等功能模块,以及各种吸声降噪措施、蒙皮等边界条件或噪声控制措施的模拟功能;极高的软件可靠性和准确性:AutoSEA2经过严格的开发和客户广泛的使用,证明具有非常高的可靠性和准确性;优秀的和服务:ESI公司提供强大的,AutoSEA2软件最新版本为2.5,包含了模型智能检测、水下壳辐射等新增功能。


汽车方面的应用:进行各种车辆建模,实现内部声质量、整车结构噪声、内饰材料重量/花费的最优化设计。



   

   

   

六、传递路径分析方法

复杂系统受多种振动噪声源的激励,每种激励都可能通过不同的路径,经过衰减,传递到多个响应点。为了降低振动噪声,对各种传递路径进行预测和分析,并采用矢量叠加方法。这种分析方法就叫传递路径分析方法,因为使用了矢量叠加方法又叫矢量叠加法。这种方法国内研究的还不多,但不难理解。传递路径分析是用于分析振动声学能量通过结构和声学路径从源到接受者的传递,目的是评价各路径对总的振动噪声量级的贡献大小,使得工程师可以识别出解决规定问题需要修改的部件。


传递路径分析中首先需要明确所需要分析的激励点,这根据不同的问题而定。如,车身问题只需考虑地盘与车身耦合出的力激励;整车问题就要考虑车轴处、发动机悬置减振器处、空气压缩机悬置减振器处,甚至活塞和气缸缸壁之间的力激励。明确所需分析系统的耦合点后,下一步就需要估计各种耦合激励力和各种传递函数,工作量常常很大。


建立一个整车传递路径分析模型有很多方法。有纯粹基于实验测试的方法,也有纯粹基于数值计算来得到传递函数建立模型的方法。但更多的是混合应用实验和数值计算建立模型。


应用软件有LMS的TPA传递路径分析软件。LMS传递路径分析软件提供了用于数据处理和结果显示的许多有效的工具,成为试验和设计工程师的好帮手。比利时LMS国际公司,总部设在比利时鲁文,专门为机械产品开发的功能品质工程提供解决方案。公司开发的软件,生产的硬件及其它相关产品可以帮助工程人员根据运动学与动力学、平顺性、操纵的稳定性、结构的整合、振动、声学、NVH和疲劳历程等特征对设计进行改进,这样用户就可以了解并解决出现的问题。


与此同时LMS先进的属性优化技术也就转化成为LMS在市场上的战略性竞争优势。LMS提供的解决方案是以数字开发为基础,以过程开发为中心,最终提高生产厂家的劳动生产率。LMS公司的工程服务部门可以为整车的开发提供很多技术性支持,从项目承包到问题诊断,技术转让,合作开发等等。


LMS公司从1997年起已先后在北京、上海和广州成立办事处,并与同济大学共建“同济-LMS汽车振动噪声耐久性技术中心”,以加强对中国汽车CAE人才培养及。近几年LMS中国业务量保持年均增幅40%以上,客户包括上海泛亚、上海大众、一汽技术中心、一汽大众、东风、长安等整车及零部件制造商。



   

   

   

七、模态综合方法

世纪60年代从航天工程中发展起来的解决复杂结构系统振动问题的有效方法。美国W.C.赫梯等人提出此法,以后被推广应用于非线性振动和随机振动响应分析。模态综合是将一个复杂结构分解成若干个较为简单的子结构。在弄清各子结构振动特性的基础上,根据对接面上的协调条件将这些子结构合成一总体结构,然后利用各子结构的振动形态得出总体结构的振动形态。


用此法进行系统固有特性的求解和动力响应分析,只需计算子结构的少数几个主模态(主振型),因此能有效地缩减自由度而不改变系统的物理本质。固定界面法和自由界面法用得较为成功。此法已用于航空航天、动力、车辆、船舶和海洋工程的动力分析,效果显著。


模态综合方法可以减少整车结构分析时工作量巨大的难度。首先将车辆结构分为若干个子结构(或部件),然后对每个子结构进行模态分析(计算的或试验的),得到子结构的动力特性,然后再根据子结构之间的联结条件,利用子结构的模态特性和模态坐标建立起来的联结方法,将已经获得的子结构的模态动力特性进行综合,从而得到整车结构的模态特性。


模态综合方法对结构的动力修改也十分方便。修改往往是局部的,运用模态综合方法,只需对修改过的子结构重新进行计算分析或动力试验,然后将所有的子结构的模态特性进行综合,最终获得修改后的整体结构的动力特性。


应用软件有ANSYS等。ANSYS的模态综合法采用固定界面和自由界面模态综合法,其中固定界面模态综合法的基本思想是将各子结构与其他子结构相连接的界面自由度完全约束,求出此时子结构的低阶主模态集。然后通过释放子结构界面自由度,分别得到子结构的刚体模态集和约束模态集,由低阶主模态子结构的刚体模态集和约束模态集组成子结构的Ritz基。而自由界面模态综合法的基本思想是把子结构从整体系统中分割出来,将子结构间界面自由度上的约束全部去掉,对界面自由度的字结构进行模态分析。然后利用相邻子结构界面位移协调条件和平衡条件将各子结构综合成一个整体。

【免责声明】本文来自声振论坛,版权归原作者所有,仅用于学习等,对文中观点判断均保持中立,若您认为文中来源标注与事实不符,若有涉及版权等请告知,将及时修订删除,谢谢大家的关注!

来源:汽车NVH云讲堂
MechanicalSystem静力学振动疲劳碰撞非线性二次开发通用航空航天船舶汽车MATLABAutoCADLMS理论材料NVH
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-04-18
最近编辑:1年前
吕老师
硕士 28年汽车行业从业经验,深耕悬置...
获赞 279粉丝 652文章 1344课程 16
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈