1. 原点动刚度
原点动刚度IPI(Input Point Inertance,IPI):概念上类似原点(或称作驱动点)频响函数,指的是同一位置、同一方向上的激励力与位移之比,主要测量与车身接附点处的原点动刚度,比如车身与发动机悬置、副车架、悬架连接处、排气挂钩处等位置的局部动刚度,考虑的是在所关注的频率范围内该接附点局部区域的刚度水平,过低必须引起更大的噪声,因此,该性能指标对整车的NVH性能有较大的影响。动刚度不足会对整车乘坐舒适性和车身结构件的疲劳寿命产生十分不利的影响。下图为某接附点的动刚度测量曲线。
另外通过动刚度乘以主被侧的相对位移,得到传递力,如挂钩力。一般对豪华车,挂钩传递力<2N,中级轿车<5N,一般经济型轿车<10N。当这个力大于10N时,在车内可能会感受来自排气系统的振动和挂钩传递过来的结构噪声。
2.悬置动刚度
在作悬置隔振器设计时,要求在低频时,刚度要大;在高频时,刚度越低越好。这是为什么呢?
首先,悬置隔振器要承受动力总成的重量和来自发动机扭矩的作用力,它必须有足够的刚度。路面的冲击和发动机启动时的摇摆会作用到隔振器上,这些激励频率比较低。如果隔振器刚度低,动力总成会产生较大的位移,可能会与其他结构相碰撞,并且影响到安置在动力总成上的其他部件。因此,在低频段,要求隔振器的刚度大。
另一方面,通过单自由度隔振系统传递率曲线,如下图,可以看出,在隔振区内,激励频率与系统固有频率的比值越大,隔振效果越好,即隔振器刚度越低越好。于是一个理想隔振器的刚度应该在低频时刚度高,而高频时刚度低。
通过前面的单自由度系统的FRF和动刚度分析可知,在共振区范围内,阻尼对降低振动幅值起决定作用。可是在隔振区域内(激励频率与系统频率之比大于1.414),情况是相反的。从上图可以看出,在高频段,阻尼越大,传递率的幅值也大。因此,为了有效地达到隔振的效果,在高频时阻尼越小越好。