00 背景
在结构动力学分析中,阻尼对模态分析结果的影响较小,可以不考虑。但对于谐响应分析,响应谱分析,随机振动分析,以及瞬态分析,阻尼大小对分析结果的影响明显,不可忽略。
ANSYS提供了如下阻尼设置。
1)材料设置环节。
材料相关阻尼(阻尼比,结构阻尼系数为阻尼比的2倍)。
瑞利阻尼(质量系数,刚度系数)
2) 分析设置环节。
模态分析(有阻尼模态分析)。
模态叠加法谐响应分析(模态分析是否设置阻尼有影响)。
完全法谐响应分析。
响应谱分析无需设置阻尼(阻尼的影响体现在RS谱)。
随机振动分析(如果模态分析没有设置阻尼,则随机振动要设置阻尼;相反则不需要设置)。
模态叠加法瞬态分析。
完全法瞬态分析。
01 导读
瑞利(Rayleigh)阻尼假设结构的阻尼矩阵是质量矩阵和刚度矩阵的组合。结构的振型是关于质量矩阵和刚度矩阵正交的,所以质量矩阵和刚度矩阵的线性组合也满足正交条件,因此瑞利阻尼是一种正交阻尼。
瑞利阻尼,也称为比例阻尼,是一种特殊的阻尼形式,给动力学方程的数学处理带来了方便。
但更多时候,我们往往知道结构的阻尼比,不知道结构的瑞利阻尼。本文详细说明如何从阻尼比推导瑞利阻尼,以及设置瑞利阻尼的注意点。
02 瑞利阻尼
瑞利阻尼(质量系数alpha,刚度系数beta)。
瑞利阻尼与阻尼比的关系(阻尼比zeta)。
03 推导示例
假设阻尼比为0.05,频率范围为0.1Hz-20Hz,推导质量系数和刚度系数。
求解二元一次方程组,得alpha=0.0625,beta=0.0008。
04 规律总结
根据以上,阻尼比为0.05,频率范围为0.1Hz-20Hz。求得alpha=0.0625,beta=0.0008。
以频率为横坐标,阻尼比为纵坐标,绘图。
总结规律。
假设beta=0,只考虑alpha阻尼,当频率趋于零时,阻尼比变得无穷大,随着频率的增加而迅速变小;
假设alpha=0,只考虑beta阻尼,阻尼比随着频率的增加而线性增加。
瑞利阻尼在两个给定频率点推导的阻尼比等于给定的阻尼比,在频率范围之内,瑞利阻尼推导的阻尼比将小于或等于给定阻尼比,在频率范围之外,瑞利阻尼推导的阻尼比均大于给定阻尼比,而且距离越远,阻尼越大。所以给定的频率范围非常重要,要根据作用于结构上的外荷载的频率成分和结构的动力特性综合考虑。
在频率范围内,瑞利阻尼推导的阻尼比略小于给定阻尼比,结构的反应会略大于给定阻尼比情况下的反应,计算结果对工程而言是偏安全的。
在频率范围外,瑞利阻尼推导的阻尼比将迅速增大,结构的反应会明显小于给定阻尼比情况下的反应,如果频率范围外存在应该关注的频率,则可能导致计算结果非常不安全。
所以推导瑞利阻尼时,频率范围的合理选择非常重要!!