不懂谐振器,别说你懂滤波器
提前说明:谐振器是滤波器设计的基础,文章总结了谐振和谐振腔的有关知识。希望对大家有所帮助。后期作者会重点介绍谐振腔的相关设计。谢谢
共振是指一物理系统在必须特定频率下,相比其他频率以更大的振幅做振动的情形;这些特定频率称之为共振频率。共振在声学中亦称“共鸣”,它指的是物体因共振而发声的现象,比如两个频率相同的音叉靠近,其中一个振动发声时,另一个也会发声。在电学中,振荡电路的共振现象称为“谐振”。
一般来说一个系统(不管是力学的、声响的还是电子的)有多个共振频率,在这些频率上振动比较容易,在其它频率上振动比较困难,我们常研究低范围的系统频率。假如引起振动的频率比较复杂的话(比如是一个冲击或者是一个宽频振动)一个系统一般会“挑出”其共振频率随此频率振动,事实上一个系统会将其它频率过滤掉。振荡强度是振幅的平方。物理学家一般称这个公式为洛伦兹分布,它在许多有关共振的物理系统中出现。也是一个与振荡器的阻尼有关的系数。阻尼高的系统一般来说有比较宽的共振频率带,共振频率带也称为带宽。
机械共振
共振是指机械系统所受激励的频率与该系统的某阶固有频率相接近时,系统振幅显著增大的现象。共振时,激励输入机械系统的能量最大,系统出现明显的振型称为位移共振。此外还有在不同频率下发生的速度共振和加速度共振。在机械共振中,常见的激励有直接作用的交变力、支承或地基的振动与旋转件的不平衡惯性力等。共振时的激励频率称为共振频率,近似等于机械系统的固有频率。对于单自由度系统,共振频率只有一个,当对单自由度线性系统作频率扫描激励试验时,其幅频响应图(见图1)上出现一个共振峰。对于多自由度线性系统,有多个共振频率,激励试验时相应出现多个共振峰。对于非线性系统,共振区出现振幅跳跃现象,共振峰发生明显变形,并可能出现超谐波共振和次谐波共振。共振时激励输入系统的功同阻尼所耗散的功相平衡,共振峰的形状与阻尼密切相关。在一般情况下共振是有害的,会引起机械和结构很大的变形和动应力,甚至造成破坏性事故,工程史上不乏实例。防共振措施有:改进机械的结构或改变激励,使机械的固有频率避开激励频率;采用减振装置;机械起动或停车过程中快速通过共振区。另一方面,共振状态包含有机械系统的固有频率、最大响应、阻尼和振型等信息。在振动测试中常人为地再现共振状态,进行机械的振动试验和动态分析。此外,利用共振原理的振动机械,可用较小的功率完成某些工艺过程,如共振筛等。
检测技术
冲击测试:最常用的方法是用一个物品敲击机器,测量机器的反应,得到共振频率。因为很小冲击力就能激起宽范围的频率,这个方法是很有效的。使用该技术时,敲击机器结构的不同部位是很重要的,因为结构共振频率在同一个点采集,不同部位敲击得到的。当识别机器共振频率时,动力部位和传动部位都应敲击。使用这种方式时,机器必须停机。这样能轻松的识别设备的自然频率。启停机测试:在设备转轴上贴上反光带,这样启停机过程中,就能得到相位。可以看到整个过程的幅值和相位变化。设备启停机过程中,使用峰值保持方式记录振动值。如果没有共振,振动幅值以一定比率下降。如果某转速下出现振动峰值且相位变化180度,就显示了设备有共振频率。这个共振频率是相位90度处。
危害及预防
19世纪初,一队拿破仑士兵在指挥官的口令下,迈着威武雄壮、整齐划一的步伐,通过法国昂热市一座大桥。快走到桥中间时,桥梁突然发生强烈的颤动并且最终断裂坍塌,造成许多官兵和市民落入水中丧生。后经调查,造成这次惨剧的罪魁祸首,正是共振!因为大队士兵齐步走时,产生的一种频率正好与大桥的固有频率一致,使桥的振动加强,当它的振幅达到最大限度直至超过桥梁的抗压力时,桥就断裂了。类似的事件还发生在俄国和美国等地。有鉴于此,所以后来许多国家的军队都有这么一条规定:大队人马过桥时,要改齐走为便步走。对于桥梁来说,不光是大队人马厚重整齐的脚步能使之断裂,那些看似无物的风儿同样也能对之造成威胁。1940年,美国的全长860米的塔柯姆大桥因大风引起的共振而塌毁,尽管当时的风速还不到设计风速限值的1/3,可是因为这座大桥的实际的抗共振强度没有过关,所以导致事故的发生。每年肆虐于沿海各地的热带风暴,也是借助于共振为虎作伥,才会使得房屋和农作物饱受摧残。因为风除了产生沿着风向的一个风向力外,还会对风区的构筑物产生一个横力,而且风在表面的漩涡在一定条件下产生脱落,从而对构筑物产生一个震动。要是风的横力产生的震动频率和构筑物的固定频率相同或者相近时,就会产生风荷载共振。近几十年来,美国及欧洲等国家和地区还发生了许多起高楼因大风造成的共振而剧烈摇摆的事件。[1] 当直升机在地面工作时(或滑跑时)受到外界振动后,旋翼桨叶运动偏离平稳位置,如旋翼以后退型摆振运动,这时桨叶重心偏离旋转中心,旋翼重心的离心激振力,激起机身在起落架上的振动;机身振动反馈于旋翼的摆振运动,对旋翼起支持激振的作用,形成一闭环系统,使得旋翼摆振运动越来越大,当旋翼后退型频率与机身在起落架上的某一模型的频率相等或接近时,系统的阻力又不足以消耗它们相互激励的能量,这时整个系统的振动就会是不稳定的,振动幅度(振幅)将越来越大,直到直升机毁坏才告终,即出现了地面共振。机床运转时,运动部分总会有某种不对称性,从而对机床的其他部件施加周期性作用力引起这些部件的受迫振动,当这种作用力的频率与机床的固有频率接近或相等时,会发生共振,从而影响加工精度,加大机械钢铁的疲劳破坏,加大机械的损害力度。对人危害程度尤为厉害的是次声波所产生的共振。次声波是一种每秒钟振动很少、人耳听不到的声波。次声波的声波频率很低,一般均在20赫兹以下,波长却很长,不易衰弱。自然界的太阳磁暴、海浪咆哮、雷鸣电闪、气压突变、火山爆发;军事上的原子弹、氢弹爆炸试验,火箭发射、飞机飞行等等,都可以产生次声波。在我们工作、学习和生活的周围,能够产生次声波的小型动力设备很多,如鼓风机、引风机、压气机、真空泵、柴油机、电风扇、车辆发动机等。次声波的这种神奇的功能也引起了军事专家的高度重视,一些国家利用次声波的性质进行次声波武器的研制,已研制出次声波枪和次声波炸弹。不论是次声波枪还是次声波炸弹,都是利用频率为16—17赫兹的次声波,与人体内的某些器官发生共振,使受振者的器官发生变形、位移或出血,从而达到杀伤敌方的目的。现代科学研究已经证明,大量发射的频率为16—17赫兹的次声波会引起人体无法忍受的颤抖,从而产生视觉障碍、定向力障碍、恶心等症状,甚至还会出现可导致死亡的内脏损坏或破裂。这种次声波武器可以说是人类运用共振来危害人类自己的一种技术上的极致[2] 。也是由于共振的力量,巨大的冰川能被“温柔”的海洋波涛给拍裂开。甚至于美国阿拉斯加李杜牙湾经常出现的高达上百米的巨浪,也是由于共振在其中发挥了很大的“推波助澜”的作用。因为共振在这个海湾“作威作福”实在是太厉害了,所以许多航海人对这个海湾都是“敬”而远之。给人类带来重大伤亡和财产损失的地震,其中亦有共振的“幢幢魔影”:当地壳里的某一板块发生断裂时,产生的波动频率传到地面上,与建筑物产生强烈的共振,于是,就造成了屋毁人亡的惨剧。持续发出的某种频率的声音会使玻璃杯破碎。高山上的一声大喊,可引起山顶的积雪的共振,顷刻之间造成一场大雪崩。行驶着的汽车,如果轮转周期正好与弹簧的固有节奏同步,所产生的共振就能导致汽车失去控制,从而造成车毁人亡……人们在生活和生产中会接触到各种振动源,这些振动都可能会对人体产生危害。由科学测试知道人体各部位有不同的固有频率,如眼球的固有频率最大约为60赫兹,颅骨的固有频率最大约为200赫兹等;把人体作为一个整体来看,如水平方向的固有频率约为3—6赫兹,竖直方向的固有频率约为48赫兹。因此,跟振动源十分接近的操作人员,如拖拉机驾驶员,风镐、风铲、电锯、镏钉机的操作工,在工作时应尽量避免这些振动源的频率与人体有关部位的固有频率产生共振。并且,为了保障工人的安全与健康,有关部门己作出了相应规定,要求用手工操作的各类振动机械的频率必须大于20赫兹。
预防方法
到了今天,人类对付共振危害的方法更是多种多样和更加先进。例如:人们在电影院、播音室等对隔音要求很高的地方,常常采用加装一些海绵、塑料泡沫或布帘的办法,使声音的频率在碰到这些柔软的物体时,不能与它们产生共振,而是被它们吸收掉。又如电动机要安装在水泥浇注的地基上,与大地牢牢相连,或要安装在很重的底盘上,为的是使基础部分的固有频率增加,以增大与电机的振动频率(驱动力频率)之差来防止基础的振动。大街上的行人、车辆的喧闹声、机器的隆隆声——这些连绵不断的噪声不仅影响人们正常生活,还会损害人的听力。于是人们发明了一种消声器,它是由开有许多小孔的孔板和空腔所构成,当传来的噪声频率与消声器的固有频率相同时,就会跟小孔内空气柱产生剧烈共振。这样,相当一部分噪声能在共振时被“吞吃”掉,而且还能够转变为热能来进行使用。
应用
共振是十分普遍的自然现象,几乎在物理学的各个分支学科和许多交叉学科中以及工程技术的各个领域中都可以观察到它,都要应用到它。例如桥梁、码头等各种建筑,飞机、汽车、轮船、发动机等机器设备的设计、制造、安装中,为使建筑结构安全工作和机器能正常运转,都必需考虑到防止共振问题。而有许多仪器和装置要利用共振原理来制造。机械共振应用的典型例子是地震仪,它不仅是地震记录和研究地震预报的基本手段,也是研究地球物理的重要工具。利用共振可以制造超声工具,利用原子、分子共振可以制造各种光源如日光灯、激光以及电子表、原子钟等。在音乐艺术中,不论是声乐,还是器乐,共振都起决定性的作用,甚至可以说没有共振就没有音乐。人的听觉器官中有一精巧绝伦的共振系统,许多动物也如此。“听”可以说是利用共振原理对声振动的谐波分析。研究共振对于医学、仿生学均有重大意义。电磁振荡的共振在无线电技术中具有极重要的地位。电磁波信号的产生、接收、放大、分析处理都要靠共振来帮助。可以说凡要用到电磁波的地方离开了电磁波的共振是不可能的。共振还是探索宇宙和认识微观世界的钥匙。靠共振来辨认、识别来自宇宙的电磁波,研究宇宙中星体的物质结构、能量、质量。利用微观粒子的共振可认识微观世界的物理规律。例如利用核磁共振可以研究物质的电子结构和测量核磁矩。值得一提的是,与微观粒子共振有关的诺贝尔物理奖得奖项目就很多,象布洛赫和珀塞尔关于核磁共振技术的发明,卡斯特勒光泵技术的发明,穆斯堡尔效应的发现,巴索夫、普洛霍洛夫和汤斯发明的脉塞和激光,丁肇中和利希特发现的J/Ψ粒子等。[3] 实际上,中国人对于声音共振的运用,还可以追溯到很久远的年代。早在战国初期,当时的人就发明了各种各样的共鸣器,用来侦探敌情。《墨子·备穴》记载了其中的几种:在城墙根下每隔一定距离挖一深坑,坑里埋置一只容量有七八十升的陶瓮,瓮口蒙上皮革,这样,实际上就做成了一个共鸣器。让听觉聪敏的人伏在这个共鸣器上听动静,遇有敌人挖地道攻城的响声,不仅可以发觉,而且根据各瓮瓮声的响度差可以识别来敌的方向和远近。另一种方法是:在同一个深坑里埋设两只蒙上皮革的瓮,两瓮分开一定距离,根据这两瓮的响度差来判别敌人所在的方向。以上几种方法被历代军事家因袭使用。明代抗倭名将戚继光曾用上面的方法来侦听敌人凿地道的声音。甚至在本世纪的一些现代战争中,不少国家和民族还继续采用这些方法。我国古时还发明出了另一种更加轻巧、简便、实用的共鸣器。如唐代的军队中就有一种用皮革制成的叫做“空胡鹿”的随军枕,让听觉灵敏和睡觉警醒的战士在宿营时使用,“凡人马行在三十里外,东西南北皆响闻”。当声音通过地面传播到空穴时,在空穴处产生交混回响,于是就能知道敌人的多寡远近。值得一提的是,这种用竹筒听地声的方法 正是现代医用听诊器的滥觞。宋代的科学家沈括就曾巧妙地利用共振原理设计出了在琴弦上跳舞的小人:先把琴或瑟的各弦按平常演奏需要调好,然后剪一些小小的纸人夹在各弦上。当弹动不夹纸人的某一弦线时,凡是和它共振的弦线上的纸人就会随着音乐跳跃舞动。这个发明比西方同类发明要早几个世纪。据史籍记载,我国晋代就有人对声音共振现象作出了正确的解释,并已经能够完全认识到,防止共振的最好的方法是改变物体的固有频率,使之与外来作用力的频率相差越大越好。古时还有一个有趣的故事,说的就是人们如何巧妙地消除共振的。唐朝时候,洛阳某寺一僧人房中挂着的一件乐器,经常莫名其妙地自动鸣响,僧人因此惊恐成疾,四处求治无效。他有一个朋友是朝中管音乐的官员,闻讯特去看望他。这时正好听见寺里敲钟声,那件乐器又随之作响。于是朋友说:你的病我可以治好,因为我找到你的病根了。只见朋友找到一把铁锉,在乐器上锉磨几下,乐器便再也不会自动作响了。朋友解释说这件乐器与寺院里的钟声的共振频率相合,于是敲钟时乐器也就会相应地鸣响,把乐器稍微锉去一点,也就改变了它的固有振动频率,它就不再能和寺里的钟声共鸣了。僧人恍然大悟,病也就随着痊愈了。到了现代,随着科技的发展和对共振研究的更加深入,共振在社会和生活中“震荡”得更为频繁和紧密了。弦乐器中的共鸣箱、无线电中的电谐振等,就是使系统固有频率与驱动力的频率相同,发生共振。电台通过天线发射出短波/长波信号,收音机通过将天线频率调至和电台电波信号相同频率来引起共振。将电台信号放大,以接受电台的信号。电波信号通过天线向空中发射信号,短波通过云层发射,长波通过直接向地球表面发射。收音机的天线将共振磁环的频率调节至和电台电波信号相同时就会产生共振,电波信号将被放大,然后天线将放大后的信号经过过滤后传至喇叭发声。在建筑工地经常可以看到,建筑工人在浇灌混凝土的墙壁或地板时,为了提高质量,总是一面灌混凝土,一面用振荡器进行震荡,使混凝土之间由于振荡的作用而变得更紧密、更结实。此外,粉碎机、测振仪、电振泵、测速仪等,也都是利用共振现象进行工作的。进入20世纪以后,微波技术得到长足的发展,使人类的生活进入了一个全新的、更加神奇的领域。而微波技术正是一种把共振运用得非常精妙的技术。微波技术不仅广泛应用在电视、广播和通讯等方面,而且“登堂入室”,与人们的日常生活愈来愈密切相关,微波炉便是家庭应用共振技术的一个最好体现。具有2500赫兹左右频率的电磁波称为“微波”。食物中水分子的振动频率与微波大致相同,微波炉加热食品时,炉内产生很强的振荡电磁场,使食物中的水分子作受迫振动,发生共振,将电磁辐射能转化为热能,从而使食物的温度迅速升高。微波加热技术是对物体内部的整体加热技术,完全不同于以往的从外部对物体进行加热的方式,是一种极大地提高了加热效率、极为有利于环保的先进技术。专家研究认为,音乐的频率、节奏和有规律的声波振动,是一种物理能量,而适度的物理能量会引起人体组织细胞发生和谐共振现象,这种声波引起的共振现象,会直接影响人们的脑电波、心率、呼吸节奏等,使细胞体产生轻度共振,使人有一种舒适、安逸感,音律的变化使人的身体有一种充实、流畅的感觉。它活化了体内的细胞,加快了血液的流动,激活了人的物理层次的生命潜能。人们还发现,当人处在优美悦耳的音乐环境中,可以改善精神系统、心血管系统、内分泌系统和消化系统的功能,促使人体分泌一种有利健康的活性物质,提高大脑皮层的兴奋性,振奋人的精神,让人们的心灵得到了陶冶和升华。所以,人们已经开始运用音乐产生的共振,来缓解人们由于各种因素造成的紧张、焦虑、忧郁等不良心理状态,而且还能用于治疗人的一些心理和生理上的疾病。粒子加速器对于物理学的研究和发展是至关重要的,而粒子加速器对于共振的运用,用“登峰造极”来形容也一点不为过。在粒子物理的基本小宇宙中,每一种能量都有对应的频率,反之亦然,这是很自然的物质互补原理,既有波又有粒子的特性。物质因为具有波的性质,也就有了频率。粒子加速器就是运用了这样的共振原理,把许多小小的“波纹”迭加起来,结果变成很大的“波峰”,可把电子或质子推到近乎光速,在高速的相撞下产生新的粒子来。
谐振电路
对于包含电容和电感及电阻元件的无源一端口网络,其端口可能呈现容性、感性及电阻性,当电路端口的电压U和电流I,出现同相位,电路呈电阻性时。称之为谐振现象,这样的电路,称之为谐振电路。谐振的实质是电容中的电场能与电感中的磁场能相互转换,此增彼减,完全补偿。电场能和磁场能的总和时刻保持不变,电源不必与电容或电感往返转换能量,只需供给电路中电阻所消耗的电能。在具有电阻R、电感L和电容C元件的交流电路中,电路两端的电压与其中电流相位一般是不同的。如果调节电路元件(L或C)的参数或电源频率,可以使它们相位相同,整个电路呈现为纯电阻性。电路达到这种状态称之为谐振。在谐振状态下,电路的总阻抗达到极值或近似达到极值。研究谐振的目的就是要认识这种客观现象,并在科学和应用技术上充分利用谐振的特征,同时又要预防它所产生的危害。按电路联接的不同,有串联谐振和并联谐振两种。谐振电路在无线电技术、广播电视技术中有着广泛的应用。各种无线电装置、设备、测量仪器等都不可缺少谐振电路。这种电路的显著特点就是它具有选频能力,它可以将有用的频率成分保留下来,而将无用的频率成分滤除,比如收音机、电视机。收音机的天线会同时接收多个电台发射的不同载波的广播节目,而我们收听时,必须在这众多广播节目中选出我们所要接收的那一套广播节目,这就是选频(选台)。改变谐振电路的谐振频率,使其谐振在所需要接收台的载频上,从而选择出所接收台的广播信号,而滤除掉除此之外的其他台及外来的无用信号,这就完成了选台。电视机的选台也是如此。
串联谐振
当串联回路电抗等于零时,称电路发生了串联谐振,RLC串联谐振电路如图9-9所示。串联谐振时等效阻抗最小,阻抗为纯电阻。串联电阻的大小虽然不影响串联谐振电路的固有频率,但有控制和调节谐振时电流和电压幅度的作用。并联谐振
如图3-13所示电路为GLC并联电路,是另一种典型的谐振电路。并联谐振的定义与串联谐振的定义相同,即端口上的电压U与输入电流I同相时的工作状况称为谐振。由于发生在并联电路中,所以称为并联谐振。[2]
谐振电路的应用
谐振电路在电子技术中的应用是非常广泛的。由于它对频率具有选择性,在发送和接收设备中常作为高频和中频放大器的负载;谐振电路是振荡器的重要组成部分;谐振电路在电子电路中作吸收回路,用以滤除干扰信号等,下面举几个例子说明。[3]
信号的选择
某AM收音机的输入回路电路如图6-16所示。电路中,L1为收音机输入回路的接收天线,L2、C为谐振电路组成收音机选频电路,L3将选择出来的电台信号送到收音机接收电路。收音机天线接收来自空中不同电台发射的电磁波,调节C使L2、C谐振于某一所需电台的载波频率上,此时L2上流过最大电流,将这一电台信号选出。调节C使L2、C谐振在不同电台的载波频率上,就可接收不同电台的节目。[3]
信号的滤波
电视机经高频调谐器混频后输出38MHz的中频信号,如果外来信号中有38MHz的信号进入电视机,将对电视机的中频信号造成严重的干扰,所以必须将外来的38MHz的信号予以滤除,方法如图6-17所示,将LC串联谐振电路与电视机的输入端并联,且LC回路谐振于38MHz。根据串联谐振的特点,它对38MHz信号呈现一个很小的电阻,相当于使38MHz信号对地短路,不让外来的如其他电视机的中频信号进入电视机干扰本机中频放大器的工作,同时也防止本机的中频信号通过天线向外辐射干扰其他机器工作。由于LC回路对电视信号呈现很高的阻抗,不会影响电视机的正常工作。[3]
元器件测量
Q表是用来测量品质因数、电感、电容等参数的仪表,它是利用谐振电路特性来工作的,其原理可用图6-18来说明。信号源使用频率和输出电压均可变的高频信号发生器。测量时,改变频率的同时保持电源输出电压恒定不变。测量电感线圈Lx的Q值,将Lx与一个标准电容Cb串联后接在高频信号发生器的输出端,调节Cb的电容量或高频信号发生器的频率,使电路达到谐振,此时Cb两端的电压达到最大值且等于电源电压的Q倍。标准电容器Cb两端可并接电压表,也可并接Q表,宜接读出Q值,一般Q表的输出频率和标准电容Cb的电容值均有刻度标明。利用串联谐振时,已知的谐振频率f0和标准电容Cb,可得到被测线圈Lx的电感量。
推荐阅读:
相关文章,在仿真秀官网搜索:
浅谈滤波器之——啥是滤波器
浅论有关耦合的那些专利
又一篇专利被纳入麾下
再谈介质滤波器
围观介质滤波器专利之一种十阶六陷波的介质波导滤波器
文章来源于百度百科和百度文库,作为知识分享。如有侵犯,敬请告知,立即整改。谢谢