首页/文章/ 详情

气动声学基础知识:莱特希尔方程

1年前浏览2913

莱特希尔(Lighthill)方程是气动声学计算的基础方程之一。其命名是因为时任英国曼彻斯特大学教授的莱特希尔(Michael James Lighthill)在1950年代发表的《On Sound Generated Aerodynamically》系列论文首次提出此方法。通常莱特希尔方程也称为莱特希尔类比。


1 方程适用范围

和任何物理方程的提出和推导类似,莱特希尔方程在推导过程中也包含前提条件,其前提条件限制了应用范围。主要的前提条件:
1 流场分为流动区域和静止区域,且静止区域完全包围流动区域
2 静止区域的声速为恒定值
3 声音传播对流动的影响可以忽略不计
4 研究的关注区域为静止区域,流动区域仅作为声源存在

上述前提决定了,莱特希尔方程主要适用于远场声传播的问题,且流场中不存在导致声速大范围变化的因素(强可压缩性、大温度差、气体组分差异等)。


2 方程推导过程
无外界质量源和体积力时,气体声传播方程为:

方程 1(质量守恒)


方程 2(动量守恒)


对方程1取时间导数,方程2取梯度,可得:


流场中物理量是连续分布的,其密度、速度均是二阶可导函数。偏导数求导次序可进行互换而结果相同,由此可得:

方程3


无体积力作用下,流体的动量方程可简化为:

方程4


方程4的第二项,分母表示了运动流体的动量变化源,包括对流、压力梯度和粘性三种因素。

静止区域仅存在静水压力(hydrostatic pressure),其压力和密度之间满足关系式:


流动区域和静止区域之间动量的交换关系定义为莱特希尔张量(Lighthill tensor),其表达式为:


表达式第一项为区域分界面的流体穿过导致的动量交换;第二项和第三项为流体压力和粘性的作用导致的动量交换。此处将湍流和声学的界面影响做了类比,即莱特希尔类比的原因。
对于实际流场,其流动区域和静止区域为人为分割的任意形状,因此方程4和莱特希尔张量在流场任意位置均成立。考虑动量交换关系后,方程2的右侧加入动量交换源项以表明静止区域内部的声传播规律:

方程5


类似获得方程3的方法,处理方程1和方程5后可得:

方程6


方程6称为莱特希尔方程,表达了流体中声音的形成和传播规律。


3 莱特希尔方程的实际应用

直接求解莱特希尔方程进行仿真的应用较少。FW-H方程作为莱特希尔方程的扩展,考虑了固体边界的声学影响,从而大大加强了在工程仿真的实用性。FW-H方程其作为当前的气动声学研究主要应用方法之一,广泛用于风扇、航空等领域的气动声学仿真。

基于FW-H方程的直升机气动声学仿真(图源:gauss-centre.eu)

来源:驭风之道
湍流航空声学
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-02-25
最近编辑:1年前
驭风之道
硕士 | ANSYS流体技术... 签名征集中
获赞 81粉丝 142文章 71课程 3
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈