首页/文章/ 详情

【CAE案例】流体振荡器流场模拟

1年前浏览5498

01 研究背景

流体振荡器是没有活动部件的设备,根据流动入口的雷诺数及其几何形状的不同,能够在出口处产生均匀且可预测的频率脉动气流。流体振荡器的应用范围主要包括燃烧控制、改进翼型中的流动分离或减少阻力。


图1:流体振荡器工作示意图

流体振荡器一直是许多实验和数值研究的主题,流体振荡器的CFD数值模拟大多基于雷诺平均方程(Reynolds-averaged Navier-Stokes equations,RANS)。

本案例使用了流体有限元仿真软件进行高分辨率数值模拟,为了能够更好地捕捉到振荡器内部的流场细节,采用了大涡模拟(Large eddy simulation,LES)的方法,以便更好地了解振荡器的流体动力学行为,模拟结果可用作基准测试参考。

02 模型建立

本案例中,振荡器的几何模型如下图所示。


图2:振荡器几何示意图

由于康达效应(Coanda Effect),喷嘴产生的射流倾向于附着在壁的两侧之一。

例如,假设在特定时刻射流附着在底壁上,大部分射流将通过底部出口离开振荡器。

随后它的一部分将通过底部反馈回路再循环至入口处,导致射流改变方向附着在顶壁上并最终通过顶部端口离开设备,此过程循环往复,离开流体振荡器的射流即按照一定的频率改变方向。

计算中使用的流体雷诺数(基于入口宽度)为104。参考具有类似几何配置和等效雷诺数的实验工作中,流体振荡器的振荡频率为 15.4 Hz。模拟使用了以下网格:

网格

单元数

内部面

边界面

三维平面

A

33355

49390

67995

1

A1

32425

48050

66025

1

B

333550

794085

79560

10

B1

324250

772325

76600

10

图3:计算所使用的网格,从左到右为A、A1、B、B1

对A、A1网格,计算采用URANS k-omega SST湍流模型,对B、B1网格,计算采用LES Smagorinsky模型,对于B1网格同时使用URANS k-omega SST进行计算,作为对比。

每次计算模拟 40 秒,采用0.001 秒的恒定时间步长,从而总共进行 40000 次时间迭代。

此外,对时间使用二阶差分格式(仅用于 LES 模拟)和 RHS 重建,压力为5,速度为10。对速度采用中心差分格式求解,求解器的参数保留为默认值。最后,将梯度重建改为使用最小二乘初始化(imrgra = 5)的迭代重建。

03 结果分析

模拟结果都很好地描述了振荡器基本的物理特性,并预测了与实验大致相似的振荡频率,不同网格的具体结果有一定差别。

为了比较,绘制了每个出口的流速关于时间的函数图像,并进行快速傅里叶变换分析(FFT),代表性的模拟结果如下图所示。

频率、最大和最小流速列于下表中。由于存在再循环,流速会出现低于零的情况。

图4:两个出口处的质量流量及FFT分析

湍流模型

网格

频率

最大流速

最小流速

URANS k-omega SST

A

13.33

0.96

0.09

URANS k-omega SST

A1

14.82

1.70

-0.68

URANS k-omega SST

B1

14.82

0.49

-0.19

no model

B

13.37

-

-

no model

B1

15.17

0.50

-0.19

LES Smagorinsky

B

17.19

-

-

LES Smagorinsky

B1

16.29

0.47

-0.17

LES WALE

B1

17.78

0.48

-0.17

LE模型的模拟结果速度云图如下图所示,可以看出,LES 模型的模拟结果展示了更详细的流体流动状态。

图5:不同相位下的流场云图

04 结论与展望

通过采用多种网格和湍流模型进行了流体振荡器的数值模拟,验证了流体有限元仿真软件对流体振荡器模拟的适用性和准确性。

URANS k-omega SST 模型和 LES Smagorinsky 模型都能求解振荡器的物理特性,如振荡频率等,其中LES Smagorinsky模型能更好地捕捉到流动细节。


更多资讯可登录格物CAE官方网站

或关注服务号【远算云学院

期待您的关注

code_saturne
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-02-10
最近编辑:1年前
格物CAE
让创新发生
获赞 136粉丝 20文章 51课程 3
点赞
收藏
作者推荐

免费 5.0
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈