首页/文章/ 详情

智能超表面,6G时代的颠覆式技术揭秘

1年前浏览3079

“一个理智的人,应该改变自己去适应环境。只有那些不理智的人,才会想去改变环境适应自己,但历史是后一种人创造的。”

——  萧伯纳


在无线通信领域,也有一种不理智的技术,以“虽千万人吾往矣”的勇气,改变环境适应自己,硬是从一片荆棘的绝望中开辟出一条康庄大道。


下面,就让我们对这种技术一探究竟。


     为什么要改变环境 ?


在无线通信的发展史上,我们一直重点关注的是通信的主体,也就是信源和信宿。迄今为止,所有技术的技术革新,都是在增强信源和信宿的能力上下功夫。


然而,对于信源和信宿之间的无线传播环境,会使信号经历复杂的反射、折射、散射、绕射、穿透、干扰等一系列复杂的过程,我们一直对此束手无策,只能被动地去适应。



适应无线传播环境手段,就是增强基站和终端的能力,或者优化组网架构。比如高低频协同、增大发射功率、增加收发天线数、频选调度、多点协作、微站补盲等措施,千方百计地去克服无线信道的不确定性。


这些措施,犹如经验丰富裱糊匠一样,一路支撑着移动通信从2G发展到了5G,虽然外表光鲜,但早已力不从心。5G毫米波的引入,更是直接戳破了那华丽而脆弱的外衣,让高频的覆盖难题阴云笼罩。



一丛树冠,几个行人,乃至一场阴雨,都会让毫米波的信号彻底“翻车”,更别提建筑的遮挡,以及巨大的穿透损耗了。枉有巨大的带宽优势,无线传播的无力却成了毫米波规模商用的桎梏。


改变自身适应环境这条看似理所当然的道路,已然走到了尽头。唯有正面出击,主动发力来重塑无线传播信道,才是解决问题的不二法门。


改变环境来适应自己,是时候了!


近年来,有一种技术引起了业界的广泛关注,它从外表上看就是一张平平无奇的矩形薄板,却可以灵活部署在无线通信传播环境中,并实现对反射或者折射电磁波的频率、相位、极化等特征的操控,从而达到重塑无线信道的目的。


这种技术,将有望在5G-Advanced协议中开始标准化,也被认为是6G关键技术之一。


它的名字叫做“可重配智能表面”,也叫“智能反射表面”,英文为RIS(Reconfigurable Intelligence Surface)或者IRS(Intelligent Reflection Surface)。



下文,我们将以RIS来称呼这项技术。


     RIS是何方神圣 ?


RIS的技术基础,则是一种被叫做“信息超材料”的人工材料。下面我们将从“什么是超材料”开始,讲述RIS的基本原理。


超材料是指一类自然界中不存在的,具有特殊性质的人造材料。它们拥有一些特别的性质,比如让光、电磁波改变它们的通常性质,而这样的效果是传统材料无法实现的。



超材料的英文是Metamaterial,看到这里的Meta,大家可能会觉得非常眼熟。没错,近大火的元宇宙Metaverse的前缀也是这个Meta。这个拉丁词根,正是表示超出、另类之意。


怎么个“超”法呢?


地球上已知的物质都是由微观原子构成的,大量的原子按照一定的方式聚集起来,就形成了的宏观物体,也决定了材料的物理性质。



与此类似,如果我们能设计出亚波长大小的“人工原子”,并按照精密的几何结构排列,就能实现很多天然材料所不具备的性质。这种超越天然材料的人工材料,理所当然地就被称作“超材料”。


最早提出超材料概念的是前苏联的维克托·韦谢拉戈(Victor Veselago),他于1965年提出了对“左手媒质负折射”材料的物理猜想。

维克托·韦谢拉戈(Victor Veselago)
 
所谓负折射材料,是指其光学性质与常见的玻璃、空气等透明物质的性质不同,其入射和折射光位于法线同侧,和常规折射的方向相反,也就是折射角为负。  


1996年,英国的约翰·彭德里(John Pendry)爵士从理论上论证了负折射材料的存在。

约翰·彭德里(John Pendry)
 
2001年,美国的戴维·R·史密斯(David R. Smith)通过实验验证了负折射现象,证实了超材料技术的可行性。  

戴维·R·史密斯(David R. Smith)

2006年,约翰·彭德里和戴维·R·史密斯两人强强联合,提出了变换光学,并成功设计出了世界上第一款隐身衣。

隐身衣原理示意  

隐身衣实际效果  

2011年,意大利科学家费德里科·卡帕索(Federico Capasso)提出了超表面广义定律。

费德里科·卡帕索(Federico Capasso)
 
2013年,在美国国防部公布的“六大颠覆性基础技术”中,超材料赫然位于榜首,这表明美国军方对该技术前景的态度非常乐观。  

随着相关理论和技术的成熟,在过去的十几年中,超材料被广泛用于操纵电磁波,实现了许多激动人心的物理现象,如负折射、电磁黑洞和幻觉光学等等。

早期的超材料功能单一,只能按照固化的模式工作,不能实时调控电磁波,因此我们将其称之为模拟超材料。后来,超材料可通过数字编码实现对里面人工原子状态的动态控制,从而实时操控电磁波,就叫做“信息超材料”。

信息超材料的基本结构如下图所示,每一个人工原子(或者叫超原子)都可以由含有偏压二极管的微电路组成,在不同的电压下可以实现“ON”或者“OFF”等不同状态,对电磁波的响应也是不同的。

实际实现时,人工原子也可以采用PIN管、三极管、MEMS、石墨烯、温敏器件、光敏器件等其他材料。

“ON”和“OFF”这两种状态,正好可以对应到信息世界的0和1,通过把这些单元配置为0或者1,超材料也就具备了动态编码的能力。

 
如上图所示,在不同的编码下,信息超材料可以通过反射形成不同形状的电磁波束,从而实现动态操控电磁波的目的。

通过对信息超材料的深度设计,可以实现对入射电磁波多个维度的操控,包括频谱、相位、幅度、极化等等,这就为将其在移动通信中的应用创造了条件。

     RIS有何能耐 ?

那么,RIS到底是怎样重塑无线信道的呢?我们来看看下面这几个典型的场景。

1.  覆盖盲区消除。当基站和终端之间有不可逾越的障碍物时,它们之间就是非视距信道,如果信号传播环境单一,缺乏反射径的话,终端所能接收到的信号是非常微弱的。

有了RIS,可以操控反射波束,对准位于盲区的终端并动态跟踪,这就相当于创建了虚拟的视距路径,扩展了小区的覆盖范围。
2.  物理层辅助安全通信。当网络探测到入 侵者或者非法用户时,可以利用调控RIS的反射信号的相位,让其和直射信号在接收时进行抵消,从而减少信息泄露。

3.  多流传输增秩。当信号传输的环境较为简单时,往往缺乏独立的多径,难以实现足够的多流传输。通过RIS的反射,可以人为增加信号传播路径,更好地实现多流传输,提升热点用户的吞吐量。  

4.  边缘覆盖增强。当终端(下图中的终端1)位于小区边缘时,使用RIS动态操控服务小区和邻区的反射信号,使服务小区的信号同相叠加增强,来自邻区的信号则反相叠加抵消,从而有效消除邻区干扰。  

5.  大规模D2D通信。RIS可以通过对多路信号的智能反射,可以起到干扰抑制的作用,并同时进行低功率传输,有助于实现大规模的D2D通信。  

6.  物联网中无线功率和信息的传输。无线携能通信(Simultaneous Wireless Information and Power Transfer, SWIPT)技术可以同时传输信号和能量,即在与无线设备进行信息交互的同时,为无线设备提供能量。RIS可以起到类似中继的作用,通过无源波束来补偿长距离传输带来的巨大能耗,帮助充电区域提高无线传输功率。

7.  室内覆盖。要解决室内覆盖,可以通过室外基站信号穿透建筑外墙或者窗户,也可以部署专业的室分系统(蘑菇头天线或者有源室分)。这两种方式都有RIS的用武之地。

对于室外穿透室内这种方式,可以在建筑窗户的玻璃表面部署透明的RIS板,操控信号入射室内,并能实现一定的增益。

此外,在室内覆盖场景,可通过RIS来操控室分系统的反射信号,从而增加额外链路,提升系统容量及可靠性。  


8.  新型收发信机。除了可重塑无线信道之外,通过RIS还可以实现信号发射机或者接收机的功能。这是怎么实现的呢?

既然RIS是可实时编码的,那么我们将基带信号以编码的形式导入到RIS控制器,再将目标频段的射频载波发射到RIS上,通过反射就可以将基带信号调制到载波之上了。

 
这种架构的发射机可省去复杂而低效的射频链,节省高耗能的混频器、功放等器件,从而显著降低发射机的成本和功耗。

     RIS离我们有多远 ?

RIS这种创新技术,给我们带来了诸多激动而心而充满想象力的应用前景。那它目前实际测试的效果如何,技术是否成熟,研发处于什么状态,我们什么时候可以用上RIS呢?

目前学术界和产业界正在积极探索RIS实际部署的性能,以期采用它来解决5G毫米波的覆盖难题,并在未来也在太赫兹频段中应用。

IEEE ComSoC在2020年8月份成立了独立的RIS-ETI工作组,IEEE JSAC等权威期刊已将RIS列为6G潜在技术加以研究。

今年,3GPP对5G下一阶段演进:5G-Advanced的标准化正式提上日程,RIS也正是R18协议重点的研究课题之一。

大量测试结果表明,RIS的部署可以将用户吞吐量提升1~2倍,室外小区边缘覆盖提升3~4倍,室内覆盖提升约10dB。可见,RIS可带来的增益是非常明显的。

作为通信系统的一部分,RIS的成熟度与不同频段器件的成熟度密切相关。目前在较低频段(Sub-6G,毫米波低频段)的器件成熟度较高,然而在毫米波高频段和太赫兹的成熟度较低,RIS的成本和能耗优势还难以充分体现。

此外,当前RIS的硬件架构设计、基带处理算法、以及网络架构设计还都处于探索阶段,现阶段主要以性能验证为主,其商用部署还需要很长的路要走。

并且,要大规模应用RIS,选址和部署也存在一定的困难。RIS对信号的反射虽然可以做到准无源,但其动态编码离不开控制器,而控制器也是需要供电的,由此带来的成本也不低,也限制了RIS的使用。

因此,建议业界在验证RIS技术时,先从预先编码好的无源静态RIS板开始,再逐渐过渡到半静态可控的RIS,然后再结合AI技术,验证全动态编码下的RIS。这也是循序渐进、摸着石头过河的历程。

前途是光明的,道路是曲折的。RIS,这项旨在重塑无线传播环境的创新技术,未来必将成为移动通信领域的重大突破。

让我们在6G时代见证RIS的辉煌。

— END —

参考文档
1. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. By Wu Q, Zhang R. 
2. RIS前沿技术系列讲座,东南大学,金石教授
3. 智能超表面技术演进报告,6G推进组
来源:电磁CAEer
FEKO电路隐身光学建筑通信理论材料MEMS控制Altair
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2023-06-29
最近编辑:1年前
电磁CAEer
专注于FEKO,HFSS,CST等电磁仿真...
获赞 9粉丝 31文章 19课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈