首页/文章/ 详情

LSDYNA破坏失效系列(1)|基于FEM-SPH耦合方法的破坏失效仿真

2年前浏览5661

1.前言

材料破坏失效主要是由强度不足引起的,分为屈服和断裂。韧性材料失效通常表现为屈服(损伤),例如金属、塑料等,脆性材料的失效通常表现为断裂,如铸铁、岩石、玻璃等。材料破坏失效分析在仿真模拟方面一直以来都是难点问题。难点在于不同的材料具有不同的失效形式,同一种材料在不同的应力状态下也会发生不同的破坏模态,而这就要求使用者在仿真时用合适的本构来描述这些破坏行为。材料失效往往意味着大变形,传统的有限元采用了单元删除的方法来模拟材料的动态破坏过程,这不利于描述裂纹的扩展过程,而LSDYN提供了多种先进的数值方法,如扩展有限元法(XFEM)、光滑粒子法(SPH)、光滑粒子伽辽金法(SPG)、离散元法(DEM)、近场动力学法(PD)、任意拉格朗日-欧拉法(ALE)等等,这些方法能够更加准确模拟出材料动态失效过程。*****“仿真社”将针对上述方法,推出系列仿真案例,本期为光滑粒子法在破坏失效方面的案例分享。


2.FEM-SPH方法的应用

光滑粒子法(Smoothed Particle Hyrodynamics,SPH)是一种无网格的Lagrange方法,通过将连续体离散成一系列在空间任意分布的粒子质点,使用粒子的相互作用来模拟其力学行为,不存在不收敛问题。SPH最早用于模拟天体物理问题,后应用于连续体结构的解体、碎裂、层裂等,尤其对于高速冲击,爆炸等问题有着比FEM无法比拟的优势。但是,单纯的SPH通常对计算资源有着较高的要求,此外计算精度也不如FEM,尤其在边界的精度上。基于此,学者们逐渐发展了FEM-SPH相耦合的方法,我们可将连续体中发生大变形的部位使用SPH模拟,而连续体其他部位则使用FEM来进行模拟计算,从而平衡了FEM和SPH法的优缺点。

3. FEM-SPH在LS-DYNA中的设置

3.1产生SPH粒子

LS-Prepost产生粒子的方法有两种,一是根据软件自身的模型,一般只能对简单的球体、圆柱体、长方体等简单的几何形状生成粒子;二是根据外部模型生成粒子,可在复杂的几何体中生成粒子,应用最广。图1为使用方法二根据外部模型的节点生成粒子的步骤示意图。图2展示了粒子的显示方法,此图可从菜单栏settings-general settings得到,我们设置粒子的显示半径并勾选smooth可展示不同半径的粒子。

图1 SPH粒子的生成方法


图2 粒子的显示方法


3.2 FEM-SPH耦合的设置方法

FEM-SPH在LS-DYNA中涉及到三个关键词,分别为SECTION_SPH, CONTROL_SPH, CONTACT_TIED_NODE_TO_SURFACE,分别如图3-图5所示。其中图5通过绑定接触将SPH和FEM耦合了起来,从而能够传递力,这也是本方法的关键。通常,FEM作为主面,SPH为从面。


图3 SPH截面属性卡片


图4 SPH控制卡片


图5 FEM-SPH绑定接触卡片


4.基于FEM-SPH方法的动态损伤案例

本节分享3个FEM-SPH耦合案例,涉及平板拉伸,子弹侵彻铝合金板,子弹侵彻混凝土板。这里平板为无限大平板,模型采用四分之一建模。此案例需要为无限大平板设置无限大关键词*BOUNDARY_NON_REFLECTION和对称边界条件*CONSTRAINED_GLOBAL;为SPH粒子设置对称边界条件关键词*BOUNDARY_SPC_SYMMETRY_PLANE


4.1 FEM-SPH法模拟铝合金平板拉伸破坏

图6 平板拉伸有限元模型


图7 平板拉伸的Mise云图


8 拉伸破坏


4.2 FEM-SPH法模拟子弹侵彻铝合金板

9 弹体和铝合金板几何模型

 

图10 弹体侵彻铝合金板损伤演化


4.3 FEM-SPH法模拟子弹侵彻混凝土

图11 子弹侵彻混凝土的损伤演化



来源:仿真社
ACTLS-DYNA断裂离散元裂纹爆炸材料控制
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2022-12-05
最近编辑:2年前
仿真社
硕士 ABAQUS/LS-DYNA探索者
获赞 215粉丝 546文章 97课程 5
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈