作者:郭勤涛1,张令弥2,费庆国3
1南京航空航天大学机电学院设计工程系
2南京航空航天大学振动工程研究所
3东南大学土木工程学院结构健康监测研究所
01
引言
02
有限元模型修正技术发展回顾
03
结构动力学有限元模型修正尚未解决的问题
04
结构动力学有限元模型确认的定义及研究意义
4.1模型确认的定义
为全面回答上述建模精度问题,人们提出了比模型修正应用更为广泛的计算模型确认。模型确认定义为:通过计算与实验两方面的分析,对有限元模型的在设计空间的响应预报精度进行评价和确认,并在此基础上进行模型修正,为进一步的应用提供精确可信的有限元模型以及响应计算方法。所以有限元模型确认的研究目标有两个:结合有限的实验分析,获得精确可信的确定性的有限元模型;并获得进行下一步的响应预报所需要的计算参数。
4.2模型确认的研究意义
分析结构动力学有限元模型修正尚未解决的问题以及模型确认的目标,可以看出,模型修正是模型确认的一个特例,通过有限元模型确认的研究,将进一步提高有限元分析技术在工业领域的应用水平,使之成为更为准确和可靠的分析计算工具。
具体分析如下:对于确定性线性结构系统,模型确认方法引入了分级修正的概念,使得有限元模型的修正精度进一步提高,因为子结构比总体结构含有更为详细的结构信息;由于模型确认引入了基于快速运行模型(或称响应面模型)的修正方法,减少直接FEA求解灵敏度的计算工作量,并可有效解决局部最优问题;基于快速运行模型的修正方法易于与专业FEA软件进行数据交换,充分发挥了商用软件的计算能力,从而使得修正技术易于应用而更具生命力。
模型确认对广泛存在于结构系统的不确定性进行量化和传递分析,将有助于揭示客观世界的本质规律,提高有限元仿真的精度;并防止修正方法得到等效而非正确模型的可能。
模型确认的研究将提供一套全面解决结构动力学有限元分析涉及领域的高精度建模方法,拓展FEA的应用能力。在产品设计方面,对结构产品的分析、设计将不仅仅局限于数值计算,而发展为设计空间的计算仿真和响应预报。逐步实现利用计算机仿真来对新产品进行设计、分析、评价和“测试”。
在武器装配研制等领域中,计算仿真的作用更为突出。并且将逐渐用来补充、以至取代一些由于价格昂贵或政治、环境等条件不允许进行的全尺寸系统试验。例如,20世纪90年代签署暂停地下核试验国际公约后,计算仿真就成为确定结构和部件老化对核武器系统性能安全和可靠性影响、确保核武器从储存到使用过程中战斗力有效的主要保证。
可以预见,随着有限元计算仿真重要性的增加,以及重大决策对有限元计算仿真依赖程度的提高,有限元模型确认的研究将受到关注.因为普通意义上的计算仿真只是给出了一个或几个仿真的结果,或是某次仿真的结果与某次实验的误差是多大,不能回答仿真的结果能在多大范围和置信度上代表真实系统,而模型确认的研究将为该问题寻找解决办法.
05
模型确认的主要研究内容及研究现状
5.1模型确认的主要研究内容
为建立一套结构动力学模型确认的总体方法,需对如下关键问题进行研究:
(1)模型与试验不确定性量化(quantification)和传递(propagation)分析研究。着重研究在新材料(包括复合、夹层和黏弹性材料)和特殊结构(包括接头和结合面等)建模中的不确定性描述;模型和试验的不确定性在输入参数(如材料参数、几何参数)和响应特征(如模态参数、频率响应、动应力等)之间的传递。模型方面包括模型结构和模型参数不确定性。试验方面包括试件、环境与测量数据的不确定性。
通过建立快速计算模型,研究①输入参数不确定性对响应特征不确定性的统计影响(正向传递);②由响应特征的不确定性找寻输入参数不确定性(反向传递)以及通过输入参数筛选,识别哪些输入参数及其组合是造成响应特征不确定性的主要原因。
(2)响应特征抽取(feature extraction)和确认准则的研究。模型确认的主要途径之一是对确认试验和仿真预报结果进行比较。用于比较的物理量即为特征。响应特征必须既易于从响应数据中提取,又能充分反映系统在振动与冲击环境中的本质特点和足够的信息。如何从大量的计算响应和测试信号中抽取响应特征,并使用合理全面的比较和评价准则是模型确认研究的关键之一。
(3)模型参数修正研究。在以上不确定性传递和量化分析基础上通过分层确认试验,以及试验特征与计算特征的统计相关分析对模型参数进行修正和校准。
(4)仿真模型预报精度评估研究。确认试验一般只能在结构运行空间(或设计参数空间)中的一点或若干点进行,而仿真模型预报必须在整个运行空间进行。预报精度评估就是通过分层确认和修正等手段,对在整个运行空间(含实验验证范围以外)上的响应预报精度进行评估,从而实现模型确认的目标。
5.2模型确认的研究进展与现状
从20世纪90年代以来,以确定性的思想为基础发展的模型修正已开始向统计学方面发展。如在国内方面:华宏星等用贝叶斯方法把修正技术进行了推广;张令弥等初次探讨了模型确认的研究内容和应用前景;从国内文献看来,系统化的提出模型确认的论文尚不多见。国外方面:为了保证对战略决策起重大作用的计算仿真的预报精确性和可信性作出可靠估计,90年代末由美国能源部所属洛斯阿拉莫斯、圣地亚和劳化斯利物莫尔三大国家实验室(LANL、SNL和LLNL) 负责实施的软件验证(code verification)和模型确认 (model validation)子计划(与90年代中期美国能源部启动的“战略计算首创计划”(accelerated strategic computing initiative program)相配套),即ASCI V&V计划.圣地亚国家实验室(SNL)于1999年负责制 定了ASCI V&V指南。与此同时,美国学术界也积极行动,继美国航空航天学会(AIAA)于1998年公布计算流体动力学中的软件验证和模型确认(V& V)指南之后,美国计算力学学会(USACM)于1999年夏季决定成立用于计算固体力学(CSM)的V&V专门委员会,起草指南。从1999年到2004年逐渐有关于模型确认的论文发表,其研究进展可以概括如下:模型确认的总体方法和技术路线已开始形成,并在不断发展。洛斯阿拉莫斯实验室的Hemez,Doebling等于2001年具体阐述了模型确认的总体方法,并用一非线性冲击的例子进行了研究;圣地亚实验室的Alvin于1998年也阐述了模型确认的 总体方法,并用一个自由支承的薄铝板和轴承座进行了实例分析。但是,如何对实验验证范围以外的响应预报精度进行评估和确认,是目前模型确认研究的难点,有待研究和突破。
不确定性及误差的量化和传递分析是模型确认中的关键问题之一,该问题的研究已逐渐展开。不确定性在结构动力学领域常根据其特点被分为结构系统本身固有的随机不确定性(aleatory uncertainty)和模型的不确定性(或称为认知不确定性,epistemic uncertainty)两大类。首先对模型仿真建模的不同阶段的不确定性因素和误差进行了分类和具体定义,Alvin等研究了参数和模型结构含有不确定性因素时,其不确定性的正向传递方法;Doebling等则给出了一个蒙特卡罗模拟结合FEA的不确定性的正向传递计算方法;Hemez等使用数理统计的FPI(fast probability integration)计算不确定性及误差的正向传递,并使用响应面建立快速运行模型进行参数优化,以求解这类统计意义下的逆问题。显然,由于不确定性问题的复杂性,更有效更精确的正反问题求解方法还需进一步研究,特别是对于少样本和非正态分布的问题,需要借鉴更为先进的理论方法深入研究。确认准则和响应特征抽取技术的研究在逐渐完善之中。详细讨论了各种响应的确认准则,包括时域响应的均方根准则和主分量准则,频域响应的均方根准则和特征系统实现算法(eigensystem realization algorithm,ERA准则),以及冲击响应 谱准则和基于自回归滑动平均模型(auto—regressive, moving average,ARMA)的确认准则等。除了直接实用连续信号进行比较和评价之外,还可以使用特征抽取技术,评价抽取后的特征量。上述主分量准则就是通过主分量抽取技术,对分解后的奇异值和奇异值向量进行的比较。主分量分解是非常有效的时域响应特征抽取方法,可以用于线性系统和非线性系统的各种时域响应的评价。特征抽取技术还包括峰值抽取、平均值抽取以及针对线性低频系统的模态抽取。其中模态抽取技术(也称模态识别)已经发展相当成熟,使用其精确高效的时域、频域识别方法可以得到可靠的模态参数。
总之,对用于包含结构动力学在内的固体力学计算仿真模型确认研究已崭露头角。但是许多关键问题还有待突破,因此,大量深入、细致的研究工作尚待结合特定的学科和应用背景积极开展,特别是要达到使用模型确认方法对实验验证范围以外的响应进行精确预报的目的,还有许多难题有待解决。模型确认从理论研究到工业应用还需众多科技工作者的共同努力。在工业界(特别是航空航天与汽车工业)发展起来的虚拟原型实验技术方兴未艾,目前仍主要局限于刚体动力学和零部件级机械结构的设计研制,为应用于复杂结构系统,达到部分取代全尺寸系统试验,尚有大量的模型确认工作要做。
06
结论
感谢您阅读,我们下期见!