轨道交通车辆按照动力的布置方式分为两大类:动力集中式和动力分散式(Electrical multi-unit,缩写为EMU)。动力集中式列车顾名思义,就是整列车的动力全部集中在一节车上,即机车,就是我们常说的火车头。其布置如下图1所示。
图1-动力集中式列车
而动力分散式列车,就是我们常说的动车组,是将传统列车火车头取消,将其动力分散在各节车内。当然不是每节车厢都有动力,而是根据不同编组方式,如四动四拖等,如下图2所示。有动力的叫动车,以M(motor)表示,没有动力的叫拖车,以T(trailer)表示。
图2-动力分散式列车
由上图1可见,虽然传统列车每节受力都是不同的,但由于各节拖车的互换性,各节拖车的设计基本相同,因此各节车厢的车钩安全系数都是不同,相同成本的情况下,造成整体的安全系数偏低。高铁列车都是动力分散式,因此,每节车厢车钩受到的外载荷相同。所以,簧下零件的安全系数是相同的,簧下零件的利用率得到提升,可以在更大载荷下工作。由于列车在高速工况下,风载是最主要的运行阻力,那么相比于动力集中式列车,动力分散式动车组更适合在高速运行的工况。
对于高铁列车驱动零件都是在簧下布置,包括,驱动系统、轮对、制动系统等,如下图3所示。
首先要清楚载荷的来源和传递路径,以上图3转向架为例,三个方向上力的传递路径是:
1)在与地面垂向方向:车体 → 二系空气弹簧 → 转向架构架 → 一系橡胶弹簧 → 轴箱 → 轴箱轴承 → 车轴轴颈 → 车轮 → 钢轨
2)沿着列车行进方向的纵向牵引力:钢轨 → 车轮 → 车轴轴颈 → 轴箱轴承 → 轴箱 → 一系橡胶弹簧 → 转向架构架 → 牵引杆 → 车体牵引座
纵向制动力:与纵向牵引力路径相同,方向相反
3)横向:钢轨 → 车轮轮缘 → 车轴 → 轴箱轴承 →轴箱 → 一系橡胶弹簧 → 转向架构架 → 二系空气弹簧和侧挡 → 车体
在这个力的传递路径上的零件是最重要的零件,必须要加以计算、校核。这些零部件中的螺栓一定有风险等级为H的螺栓,就一定需要按照VDI2230进行计算。涉及到哪些零件呢?请看下面这些图。
当然,不在力的传递路径上的零件所涉及的 螺栓,也有很大一部分需要根据VDI2230进行计算。对于螺栓,我们知道是要按照VDI2230进行计算,那么对于螺栓之外的零件,包括联结件、结构件,那也是需要采用德国标准进行计算。下面将这些标准中的一部分列写出来。
二、高铁列车关键机械零部件采用标准汇总
三、利用德国标准进行高铁列车关键零部件设计实例
1、车钩
图5-车钩轴承座装配图
首先我们要明确,强度分析不等于有限元计算,有限元计算只可能是强度分析中的一个环节,有些情况下需要有限元作为强度分析的其中一步,如本例的车钩轴承座强度分析。而有些情况下,强度分析是不需要有限元计算的,如本月的线上研讨会中我会举例的车轴的强度计算和分析。各个零件的材料信息如下表所示:
图6-车钩轴承座各零件有限元网格划分
图7-车钩轴承座在受拉工况下的约束、加载、应力结果
图8-车钩轴承座在受压工况下的约束、加载、应力结果
在我们开始此车钩轴承座强度分析开始,我们不是进行有限元计算,而是先计算此轴承座各零件的许用强度,要求许用强度就要先知道零件的实际强度再除以安全系数。
这里就有两个重要的知识点,零件的实际强度,零件的安全系数。这两个数值都是有限元无法给我们提供的,只能依赖于我们对机械设计知识的掌握程度、对德国标准的熟悉程度。
首先,对于安全系数,我们一般是根据FKM获得,但是对于具体行业有具体行业的标准,我们在做强度评价的时候,如果产品已经有成熟的行业标准来规定其各工况下的安全系数,那我们处理的方法是将此行业标准和FKM导则进行结合使用来确定安全系数。另外,材料的屈服强度和抗拉强度,我们具体用哪个来评价?传统方法或是有些欧盟标准如EN12663是对于韧性材料采用屈服强度进行评价,但是FKM告诉我们这样我们不能武断地采用屈服强度而排斥抗拉强度,应该将两者结合起来使用,这也是FKM相比其它标准更全面、更精准的地方之一。对于零件的名义强度值,已材材料,可是根据标(EN 10083)准查询到的轴承座板的材料的抗拉强度为900 MPa, 屈服强度为700 MPa,EN 10083 也是欧洲标准,不会错,但我们计算时候是否就将许用强度定义为700/1.15=609 MPa呢?如果是这样,那么此车轴的轴承座板的许用屈服强度为609 MPa大于其最大应力值466 MPa, 是完全满足的。但实际上答案却不是这样。请看下面的最终评价过程。
那么为什么明明查询标准是700 MPa的强度值,计算许用强度时却不是700/1.15而是400/1.15?
这就需要用到FKM的理论,这一点我会在11月22日仿真秀和北京东方所联合主办2022轨道交通技术交流月“螺栓设计老张”我的线上研讨会《德国标准在高铁列车设计中的应用》上给大家现场详细讲解推导。
另外,从最大应力来看,实际应力已经超出零件的屈服极限了,那这个设计到底是否成功呢?结果是否通过评价呢?这个我也会在本月的《德国标准在高铁列车设计中的应用》“线上研讨会上给大家一并讲解。大家可以提前在仿真秀官网和APP报名,详情见后文。
2、车轴的校核
在11月22日《德国标准在高铁列车设计中的应用》的直播中给大家通过DIN标准现场计算,并给大家展示德国计算报告(部分)
3、迷宫密封
在11月22日的线上研讨《德国标准在高铁列车设计中的应用》中,我给大家通过现场通过基于DIN7190标准并给大家展计算报告(部分)为什么迷宫密封配合不能过松?为什么迷宫密封配合不能过紧?
4、箱体的有限元结果评价
由于篇幅原因,齿轮箱箱体的有限元结果评价也将在11月22日《德国标准在高铁列车设计中的应用》的线上研讨中给大家现场讲解 (利用FKM)。
5、齿轮箱拉杆螺栓
如何根据VDI2230设计齿轮箱拉杆螺栓接头?在11月22日《德国标准在高铁列车设计中的应用》的线上研讨会中我将给大家现场讲解 (利用VDI2230)
四、我的线上研讨会
11月22日19时,我在《2022轨道交通技术交流月》第一期报告分享《德国标准在高铁列车设计中的应用》是笔者对德国标准的学习、使用方法与对国内产品设计的经验总结。
1、讲座内容:
高铁列车车钩的有限元结果评价
机车/动车车轴的强度计算
德国标准、技术的学习、应用与国产化的经验和建议
2、讲座嘉宾
螺栓设计老张,仿真秀优秀讲师,高级工程师,齿轮箱研发设计专家。师从德国齿轮箱大师Hans-Jürgen Linder和Michael, Bachmann,为其两个关门弟 子之一。擅长螺栓计算VDI2230、过盈压配DIN7190、零件应力强度分析评价导则FKM、圆柱滚子轴承设计等。多次受邀赴中国中车集团、多所985高校、航天科工集团、中广核集团、上海电气、某大型汽车企业、国家某机械研究所、某德国企业在中国分公司、某齿轮箱制造业央企等近20家企事业单位进行授课培训。为数家风力发电企业进行螺栓断裂失效分析及解决方案咨询。
3、如何报名
请识别下方二维码报名,欢迎分享本文到朋友圈收藏。
五、轨道交通技术交流月
1、讲座安排
2022轨道交通技术交流月(一):德国标准在高铁列车设计中的应用-仿真秀直播
2、学习资料包(欢迎朋友圈收藏)