导读:模态贡献量分析是基于结构模态的频响分析,一般被用来分析诊断低频振动问题,如方向盘抖动、地板抖动以及整车振动等的低频NVH问题,也可以诊断中频问题,如NTF优化问题,但NTF优化一般用GPA方法比较有优势。
通过模态贡献量分析可以找出问题峰值是哪一阶模态贡献最大,是正贡献还是负贡献。对正贡献量大的模态进行抑制,对关注的峰值频率进行优化。
模态贡献量分析是基于模态的频响分析,以下是模态贡献量的基本原理:
注:由于响应是复数,具有大小和相位角,所以模态贡献量也是复数,具有大小和相位角。
模态贡献量分析定义相对于面板贡献量较简单,只需要定义贡献量输出即可。在模态贡献量输出中,可以定义结构模态输出,也可定义流体模态输出;结构模态输出一般用来诊断诸如方向盘抖动问题,可以很方便诊断出问题模态,而流体模态输出一般用来诊断噪声问题。
图2 建立模态贡献量输出
通过HyperView进入NVH后处理模态贡献量分析工具,通过以下操作我们可以进入NVH 后处理界面。
图3 NVHD后处理工具调用
通过Hyperview的后处理操作,将计算结果加载并进行以下操作即可。其中可进行结构和流体模态贡献量分析,如下图。
注:从结构模态贡献量结果中可以看出,对37Hz峰值贡献最大的是第10个模态。
图7 流体模态贡献量结果
注:从流体模态贡献量结果中可以看出,对37Hz峰值贡献最大的是第1个模态。
Complex component=Projected,即由于贡献量是复数,所以考虑贡献时,不能仅仅考虑其大小数值,还要考虑相位角,选择Project会按照不同模态贡献量投影到总响应上的分量进行排序。
图8-1
其中In phase 指正贡献量,即增大该模态贡献量,响应会增加,Out of phase 指负贡献量,即增大该模态贡献量,响应会降低。
Complex component=Magnitude,可以看到结果是按照幅值进行排序的。
通过Hyperview中的Study研究,如将流体第一个模态,即刚体模态去除100%,37Hz左右峰值明显降低,即再现了之前流体模态贡献量的诊断结果。
图10 模态贡献量模态关联
模态贡献量分析在低频问题诊断优化中应用非常广泛,且非常有效。通过模态贡献量分析可快速准确定位到引起问题的模态位置,进而进行优化改进。
作者:蓝枫老师,仿真秀专栏作者,CAE之家公 众号主编,主要从事机械及汽车结构的强度、NVH仿真工作,在汽车行业工作多年,具有较丰富的NVH仿真经验和解决实际工程的经验。
声明:原创文章,首发仿真秀,部分图片源自网络,如有不当请联系我们,欢迎分享,禁止私自转载,转载请联系我们。