首页/文章/ 详情

弹性地基梁matlab有限元编程,以双排桩支护结构计算为例

2年前浏览2430


导读:时至今日,围绕我在仿真秀平台原创的精品课《Matlab有限元编程从入门到精通10讲》,我已经撰稿2篇原创文章。它们分别是:

受到了越来越多的Matlab有限元编程工程师朋友们的关注,仿真秀平台不仅建立了订阅用户交流群我与付费用户之间的交流),还有Matlab有限元编程软件群。我将在群里与大家互动,并围绕群里用户需求和遇到问题,准备后续“课程加餐”和文章撰稿。今天我继续分享Matlab有限元编程专业技能—,关于弹性地基梁(具有弹性支撑的梁)matlab有限元编程——双排桩支护结构计算分析

在许多工程应用中,梁都是由弹性构件进行支承的,比如一些轴通常由滚珠、滚柱或轴颈轴承进行支承,一些较大的梁由弹性墙进行支承,还有一大类梁支承在地基上,一般将这类问题称为Winkler地基。
单排滚珠轴承可以看做是:在每个轴承处都有一个节点,并将轴承刚度加到单元刚度矩阵中对应垂直自由度的对角位置上(见图1a):而对于滚柱或轴颈轴承,还要考虑相应的转动(力矩)刚度。
对于较宽的轴颈轴承和Winkler地基,我们使用支承介质的单位长度上的刚度s来描述(见图1b)。在支承介质所作用的长度范围内,总势能将会多出下面一项。

             (1)

图1 弹性支承
当我们将 代人离散化模型后,上式将变为

   (2)

其中H为Hermite插值函数

  (3)

从公式(2)中的求和公式里,可以看出其中的单元刚度矩阵项,即

  (4)

因为常规的梁单元刚度矩阵也是通过最小势能原理就行推导,对应的单元应变能和刚度矩阵的表达式为

(5)

(6)

对公式(4)进行积分之后,可得

(6)

对于具有弹性地基支撑的单元,这一刚度矩阵需要加入到公式(6)梁单元对应的传统的单元刚度矩阵中,即 而矩阵就是弹性地基的一致刚度矩阵。
如果考虑到轴向变形,则

    (6)

对应的只需要用零元素扩充轴向自由度,因为梁的弯曲和轴向变形不相互耦合。
这次课提供的弹性地基梁的有限元案例,是这种双排桩支护结构的matlab有限元编程计算分析。模型的计算简图如图2所示。

图2 模型计算简图
从结构上分析,双排桩支护结构如同嵌入土中的门式刚架,与单排桩的悬臂结构、多支点的混合支护结构、重力式挡土结构等支护形式的受力机理有明显的差异。开挖面下的桩体受到侧向的地基抗力在模型中简化为土弹簧反力,桩底的约束由具体的土质条件和计算模型来确定,综合考虑上述几个方面的问题后,包括桩顶结点的处理,弹性地基梁单元刚度矩阵的确定以及荷载列阵的确定等,就可以建立基本的平衡方程求解桩身各结点位移和桩身内力。
对于坑底下部的弹性地基梁单元的刚度矩阵常规方法是按集中刚度的原则先确定在单元结点处的等效弹簧刚度然后叠加到总刚。如果将上述计算的弹簧刚度按结点位置相应的叠加到总刚那么只能加到总体刚度矩阵对角线元素上。
事实上这样处理弹性地基梁单元的方法不是十分合理。上述方法只是在结点设置弹簧没有考虑到被动区土压力也是沿桩体连续分布的并不等效于各个集中弹簧力的作用并且等效刚度不是简单的将某个区域的刚度求和。为此本文提出一种思路就是考虑单元两结点间布满弹簧再将这些分布的弹簧反力转化为等效结点力建立弹性地基梁单元结点力与结点位移的关系最终可得到基于一般梁单元修正后的弹性地基梁单元刚度矩阵,如下式所示:

   (7)

刚度矩阵具体推导过程请看论文《双排桩开挖过程的改进有限元分析方法》

本算例用到的基本参数
  • (1)土性指标:土体粘聚力 c=12k Pa;内摩擦角 φ=25°;土体重度 γ=19.2k N/m3。土体平均压缩模量 Es=5MPa,不考虑地下水位的影响。采用单一的土层计算。 

  • (2)基坑开挖深度为 9.0m,前后排桩呈矩形布置,桩直径为0.8m,桩弹性模量E1=3.0×107kN/m^2,桩间距为2m,前排桩入土深度为 11m,桩长为 20m。 

  • (3)连梁截面尺寸  b×h=800mm×600mm,连梁弹性模量 E2=3.0×107k N/ m^2,连梁之间的距离等于两桩间距,两排桩的排距为 2.0m,桩顶与连梁按刚接考虑。 

  • (4)弹簧的反力系数,m=4000kN/m^3,桩底采用单链杆支承约束,以此替代桩土之间摩擦力的作用,水平向不约束。

  • (5)土压力采用朗肯主动土压力计算,并考虑 10k Pa 的地面施工超载,坑底以上为三角形的分布,基坑底面以下为矩形分布。
计算弹性地基梁的刚度矩阵相应的代码如下:










%计算弹性地基梁单元刚度矩阵函数function [Ke] = FrameElementKe2(A,E,I,R,BarLength)   global m D   L=BarLength;   k=m*D*L;   k1=k;   k2=k;   ke=[E*A/L       0             0          -E*A/L       0                0       0        12*E*I/L^3+4*k1*L/15+k2*L/12     6*E*I/L^2     0       -12*E*I/L^3+k1*L/12+k2*L/15   6*E*I/L^2;       0        6*E*I/L^2+k1*L^2/30+k2

由于不同基坑开挖深度为9m,所以九米以上的桩可以认为传统梁,九米以下的桩为弹性地基梁。因此在进行单元刚度矩阵计算和组装时要根据单元所在位置分别进行计算和组装,具体的matlab代码如下:

















%遍历所有单元,将各单元刚度阵分块组装到总体刚度阵for iEle =1:EleCount%该单元的两个节点的编号n1=ele(iEle,2);n2=ele(iEle,3);%计算坐标变换矩阵R=CoordTransform([x(n1) x(n2)],[y(n1) y(n2)],BarLength(iEle));%计算单元刚度矩阵 Ke=R'*ke*R;局部坐标系下的单元刚度阵转换为全局坐标下的单元刚度阵if y(n1)<=deep     ke= FrameElementKe2(ele(iEle,4),ele(iEle,5),ele(iEle,6),R,BarLength(iEle));else     ke= FrameElementKe1(ele(iEle,4),ele(iEle,5),ele(iEle,6),R,BarLength(iEle));end%将各单元刚度分块组装到总刚相应位置eleDof=[n1*3-2:n1*3,n2*3-2:n2*3];K(eleDof,eleDof)=K(eleDof,eleDof)+ke; end
最终计算得到的前后排桩随深度的挠度和弯矩分别如图3所示,与文献中的结果基本一致,另外本案例还对双排桩支撑结构的弯矩图进行绘制,如图4所示。

图3 前后排桩不同深度处水平位移

图4 前后排桩不同深度处弯矩

图5 弯矩图

读者福利:为帮助大家更好的入门学习Matlab有限元编程分析能力,请在文章附件直接下载以下学习资料,如果遇到麻烦,请在文章下方留言或联系平台客服领取。

欢迎大家扫码加入仿真秀-Matlab有限元编程用户交流群,与我们抱团一起学习理论、软件和行业应用。

我的Matlab有限元编程精品课


本课程为matlab有限元编程专题课,课程主要以案例的形式进行讲解,中间会穿插案例中所涉及到的有限元基本理论,案例不局限于力学问题的有限元求解,还会涉及传热学、电学等问题的有限元求解。

因为固体力学领域我最熟悉,所以我们从固体力学开始,所涉及的单元有杆单元,梁单元,平面三角形单元,薄板单元,厚板单元,四面体实体单元等等,力学问题有静力学问题,也有动力学问题,后期还会涉及材料非线性、几何非线性、接触非线性等非线性问题,内容丰富,不断更新完善。

此外,笔者为所有订阅用户提供知识圈答疑服务VIP用户交流群。并附赠课程相关资料等(平台支持自行开具电子发票)。

1、你将学到  
  • 快速获得各典型有限元案例的Matlab代码;
  • 学习并掌握有限元基础理论;
  • 掌握Matlab编程实现有限元算法的流程;
  • 掌握多种有限元单元的基本理论Matlab编程实现过程;
  • 掌握静力学、动力学、材料非线性、几何非线性、接触非线性问题的Matlab编程实现;
  • 为订阅用户提供知识圈答疑服务,并建立VIP用户交流群,后续可根据订阅用户需求进行加餐直播。此外还提供课程对应的学习资料模型一份。

2、适合哪些人学习  
 
  • 理工科院校学生和教师;

  • 学习型仿真设计工程师;

  • Matlab有限元编程兴趣爱好者和应用者。

作者:SimPC博士   仿真秀专栏作者
声明:本文首发仿真秀App,部分图片和内容转自网如有不当请联系我们,欢迎分享,禁止私自转载,转载请联系我们。

来源:仿真秀App
静力学非线性电子理论材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2022-11-07
最近编辑:2年前
仿真圈
技术圈粉 知识付费 学习强国
获赞 10104粉丝 21581文章 3546课程 219
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈