首页/文章/ 详情

Mathematica仿真竞争性Lotka-Volterra方程(3种群)

2年前浏览2141

hong在生物学上,物种(英语:species)是生物分类的基本单位。物种位于生物分类法中最底级,在属之下。笼统来讲,同一物种的任意两个性别适当的健康个体,都能够交配繁殖出具生殖能力的后代。满足以上条件的最大群体称为物种。根据演化生物学家恩斯特.麦尔的定义,物种是:能够相互配育的自然种群的类群,且这些类群与其它的类群在生殖上相互隔离。昆虫学家陈世骧(1978)对物种所下定义为:物种是繁殖单元,由又连续又间断的居群所组成;物种是进化单元,是生物系统线上的基本环节,是分类的基本单元。

在生物学上,种群(英语:population)指代在一定空间范围内同时生活的同种生物的全部个体;或者说是由个体组成,而且能够进行交配的群体。种群的个体之间一般享有同一个基因库。

直观的理解(可能不严谨),种群是物种的子集,值的是某物种在一定范围内的个体集。比如青蛙是一个物种,这片池塘里的青蛙是一个种群。

下面的论述中,并不严格区分物种和种群。


竞争性Lotka-Volterra方程是物种争夺某些共同资源的种群动态的简单模型。它们可以进一步推广到广义 Lotka-Volterra 方程以包括营养相互作用。

考虑3个具有Logistic动力学的3个种群,在Lotka-Volterra公式的基础上添加额外的项来解释物种的相互作用。因此,竞争性Lotka-Volterra方程是:


这是一个常微分方程组。方程中并不显含时间,我们称这样的ODE是自治的。

这里代表物种对物种种群的影响。注意不必等于。因为是竞争版本,所有值都是非负的。

使用Mathematica来演示给定ODE参数和初始条件下的3物种数目随时间的演化情况。

(事实上,代码的框架是通用性质的,很容易修改来仿真其他的更加一般的ODE系统)


Manipulate[

sol=NDSolve[

{

x1'[t]==r1*x1[t]*(1-\[Alpha]11*x1[t]-\[Alpha]12 x2[t]-\[Alpha]13 x3[t]),

x2'[t]==r2*x2[t]*(1-\[Alpha]21*x1[t]-\[Alpha]22 x2[t]-\[Alpha]23 x3[t]),

x3'[t]==r3*x3[t]*(1-\[Alpha]31*x1[t]-\[Alpha]32 x2[t]-\[Alpha]33 x3[t]),

x1[0]==x10,

x2[0]==x20,

x3[0]==x30

},

{x1[t],x2[t],x3[t]},

{t,0,time}

];

Pane[

Grid[{ {

Show[

{

ParametricPlot3D[{x1[t],x2[t],x3[t]}/.sol,{t,0,time},

PlotStyle->{Thick,Blue}],

Graphics3D[

{Red,PointSize[Large],Point[{x1[t],x2[t],x3[t]}/.sol/.{t->0}],Green,Point[{x1[t],x2[t],x3[t]}/.sol/.{t->time}]}

]

},

If[range==="fixed",PlotRange->{ {0,x1max},{0,x2max},{0,x3max}},PlotRange->All],

BoxRatios->{1,1,1},

If[values,Ticks->Automatic,Ticks->None],

AxesLabel->(Style[#,Blue]&/@(Row/@Transpose[{Table[Subscript[Style["X",Italic],i],{i,3}],If[label,{"\n(Lowest\ntrophic level)","\n(Intermediate\ntrophic level)","\n(Top\npredators)"},{"","",""}]}])),

ImageSize->{400,400},ImagePadding->35

]},

{Text@Grid[{

{

Grid[{

{Row[{

Subscript[Style["X",Italic], 3],

" ("<>ToString[Round[100x3[t]/(x1[t] x2[t] x3[t])/.sol/.{t->time}][[1]]]<>"%)"

}]},

{Row[{

Subscript[Style["X",Italic], 2],

" ("<>ToString[Round[100x2[t]/(x1[t] x2[t] x3[t])/.sol/.{t->time}][[1]]]<>"%)"

}]},

{Row[{

Subscript[Style["X",Italic], 1],

" ("<>ToString[Round[100x1[t]/(x1[t] x2[t] x3[t])/.sol/.{t->time}][[1]]]<>"%)"

}]}

}],



BarChart[Round@Flatten[{x1[t],x2[t],x3[t]}/.sol/.{t->time}],

BarSpacing->0,

BarOrigin->Left,

ChartStyle->{ {RGBColor[.1,.9,.1],RGBColor[.4,.6,.4],RGBColor[.7,.3,.7]}},

Axes->None,

LabelingFunction->Left,

AspectRatio->.25,

ImageSize->{200,100}

]

}



},

Alignment->{Right,Left}]}



}],

ImageSize->400

],

Style["initial variable values",Bold],

{ {x10,2000,Subscript["X",1]},1,7000,.01,Appearance->"Labeled",ImageSize->Tiny},

{ {x20,175,Subscript["X",2]},1,7000,.01,Appearance->"Labeled",ImageSize->Tiny},

{ {x30,200,Subscript["X",3]},1,7000,.01,Appearance->"Labeled",ImageSize->Tiny},



Style["parameter values",Bold],

{ {r1,2.84,Subscript["r",1]},0,5,.01,Appearance->"Labeled",ImageSize->Tiny},

{ {r2,1.5,Subscript["r",2]},0,5,.01,Appearance->"Labeled",ImageSize->Tiny},

{ {r3,.62,Subscript["r",3]},0,5,.01,Appearance->"Labeled",ImageSize->Tiny},

{ {\[Alpha]11,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},
{ {\[Alpha]12,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},
{ {\[Alpha]13,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},
{ {\[Alpha]21,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},
{ {\[Alpha]22,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},
{ {\[Alpha]23,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},
{ {\[Alpha]31,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},
{ {\[Alpha]32,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},
{ {\[Alpha]33,.22},0,1,.01,Appearance->"Labeled",ImageSize->Tiny},



Style["time period",Bold],

{ {time,10,""},1,100,.01,Appearance->"Labeled",ImageSize->Tiny},



Style["maximum values on axes",Bold],

{ {range,"floating",""},{"fixed","floating"}},

{ {x1max,3100,Subscript["X",1]},0,20000,.01,Appearance->"Labeled",ImageSize->Tiny},

{ {x2max,300,Subscript["X",2]},0,5000,.01,Appearance->"Labeled",ImageSize->Tiny},

{ {x3max,500,Subscript["X",3]},0,5000,.01,Appearance->"Labeled",ImageSize->Tiny},



Style["label trophic levels",Bold],

{ {label,False,""},{True,False}},



Style["display values on axes",Bold],

{ {values,True,""},{True,False}},

TrackedSymbols->True,SynchronousUpdating->True,

ControlPlacement->Left,AutorunSequencing->{2,5,9,13,15}

]




从上图可以看到,从红色点标示的状态,经过10个时间单位,演化到绿色点表示的状态。随时间演化的轨迹线也在图中给了出来。

这个演示,除去必要的核心功能要点外,可以选择坐标轴是否显示数值,选择静态/动态设置显示出的坐标轴的最大值,还可以标定最后物种的数目比例。

来源:320科技工作室

Mathematica
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2022-10-13
最近编辑:2年前
320科技工作室
硕士 | 结构工程师 lammps/ms/vasp/
获赞 222粉丝 346文章 304课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈