1 引言
事实上,在《离散断裂网络(DFN)[P3]: fracture contact-model》一文中,已经创建了一个合成岩体(SRM)。在那个例子中,通过对原岩插入一条断裂来模拟断层的滑动。本文正式地提出这个概念。
2 什么是SRM
SRM是Synthetic Rock Mass合成岩体。简单地来说,
SRM = Bonded Particle Model Smooth-Joints
虽然不排除有些岩体是各向同性的,但大多数的岩体呈各向异性。岩体内的裂缝,节理,断层等不连续导致了岩体有可能在原岩内破坏,也有可能沿着不连续面破坏,还有可能是二者联合在一起形成的破坏 。在有限元或者FLAC中,使用interface来模拟不连续,显然这种方法有局限性,UDEC和3DEC能够模拟不连续和原岩组成的模型,例如《UDEC: 岩体边坡阶梯状节理模拟---一个操作指导》,比使用interface进了一步。而smoothjoint 节理模型能够更好地预测这种破坏机理。建模方法是把断裂信息(即断裂几何形状和特性)叠加到BPM模型上。即BPM对完整岩石建模,通过修改断裂接触点处的接触模型引入断裂的力学行为。由于PFC模型本质上是离散的,因此破坏可能在完整的BPM区域和沿断裂面发生。这种构造岩体的过程称之为合成岩体(SRM)方法。
3 创建一个SRM
首先创建一个原岩模型
contact cmat default model linearpbond property kn 1e5
contact cmat default model linearpbond method deformability emod 60e9 ...
kratio 2.5 property fric 0.5 lin_mode 1
接着安装smoothjoint模型
(1) 手动加入断裂:
fracture create dip 30 size 15.0
或者自动产生断裂:
fracture generate fracture-count 100
fracture template create 1 size power-law 3 size-limit 1 100
fracture generate dfn 'fractures' template 1 ...
generation-box -4.0 4.0 -4.0 4.0 -8.0 8.0 ...
p10 1.5 begin (0.0,0.0,-8.0) end (0.0,0.0,8.0)
(2) 处理小尺寸的断裂
fracture combine angle 30.0 distance 1.0 merge
fracture combine angle 40.0 distance 1.0 collapse
(3) 安装断裂接触模型
fracture contact-model model 'smoothjoint' install dist 0.1 activate
fracture contact-model model 'smoothjoint' install use-aperture
4 SRM参考文献
下面这些关于SRM的参考文献来自于岩土工程大数据集---【Synthetic Rock Mass.txt】
1. Potyondy, D. and Cundall, P.A. (2004) A bonded particle model for rock. Int. J. Rock Mech. Min. Sci., 41: 1329-1364.
2. Pierce, M.E., and C. Fairhurst. “Synthetic Rock Mass Applications in Mass Mining,” in Harmonising Rock Engineering and the Environment (Proc. 12th ISRM Int. Congress, Beijing, China, October 2011), pp. 109-14, Q. Qian and Y. Zhou, eds., ISBN 978-0-415-80444-8, London: Taylor & Francis Group (2012).
3. Potyondy, D. O. “The Bonded-Particle Model as a Tool for Rock Mechanics Research and Application: Current Trends and Future Directions,” Geosystem Engineering, 18(1), 1–28 (2015), DOI:10.1080/12269328.2014.998346.
4. Manouchehrian, A., et al. (2014). "A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression." Archives of Civil and Mechanical Engineering 14: 40-52.
5. Cundall, P. A. “Numerical Experiments on Rough Joints in Shear Using a Bonded Particle Model,” in Aspects of Tectonic Faulting, pp. 1-9. F. K. Lehner and J. L. Urai, Eds. Berlin: Springer-Verlag (2000).
6. Yoon, J., H. Lee and S. Jeon. “New Way of Determining Microparameters for 2D Bonded Particle Model Generation in Uniaxial Compression Simulations,” in DEM 07, CD Proceedings of the Discrete Element Modelling Conference (Brisbane, Australia, August 27-29, 2007). Minerals Engineering International (2007).
7. Reyes-Montes, J. M., W. S. Pettitt and R. P. Young. “Validation of a Synthetic Rock Mass Model Using Excavation Induced Microseismicity,” in Rock Mechanics: Meeting Society’s Challenges and Demands (1st Canada-US Rock Mechanics Symposium, Vancouver, Canada, May 2007), Vol. 1: Fundamentals, New Technologies & New Ideas, pp. 365-369. E. Eberhardt, D. Stead and T. Morrison, eds. London: Taylor & Francis Group (2007).
8. Sainsbury, B., M. E. Pierce and D. Mas Ivars. “Analysis of Caving Behaviour Using a Synthetic Rock Mass – Ubiquitous Joint Rock Mass Modelling Technique,” in SHIRMS 2008 (Proceedings of the 1st Southern Hemisphere International Rock Mechanics Symposium, Perth, Western Australia, September 2008), Vol. 1, pp. 343-352. Y. Potvin et al., eds. Nedlands, Western Australia: Australian Centre for Geomechanics (2008).
9. Pierce, M., et al. “A Synthetic Rock Mass Model for Jointed Rock,” in Rock Mechanics: Meeting Society’s Challenges and Demands (1st Canada-US Rock Mechanics Symposium, Vancouver, Canada, May 2007), Vol. 1: Fundamentals, New Technologies & New Ideas, pp. 341-349. E. Eberhardt, D. Stead and T. Morrison, eds. London: Taylor & Francis Group (2007).
10. Pierce, M., D. Mas Ivars and B. Sainsbury. “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” in CD Proceedings of the International Conference on Rock Joints and Jointed Rock Masses (Tucson, Arizona, January 2009), paper 1091. P. H. S. W. Kulatilake, ed. Tuscon: Kulatilake & Associates (2009).
11. Mas Ivars, D., et al. “The Synthetic Rock Mass Approach – A Step Forward in the Characterization of Jointed Rock Masses,” in The Second Half Century of Rock Mechanics (11th Congress of the International Society for Rock Mechanics, Lisbon, Portugal, July 2007), Vol. 1, pp. 485-490. L. Ribeiro e Sousa, C. Olalla and N. Grossman, eds. London: Taylor & Francis Group (2007).
12. Ivars, D. M., et al. (2011). "The synthetic rock mass approach for jointed rock mass modelling." International Journal of Rock Mechanics and Mining Sciences 48(2): 219-244.
13. Elmo D., K. Moffitt and J. Carvalho. 2016. Synthetic rock mass modelling: experience gained and lessons learned. 50th U.S. Rock Mechanics Symposium. Houston, Texas, June 2016. Paper 777.
14. Ivars, D. M., et al. (2011). "The synthetic rock mass approach for jointed rock mass modelling." International Journal of Rock Mechanics and Mining Sciences 48(2): 219-244.
15. Zhang, Y. and D. Stead (2014). "Modelling 3D crack propagation in hard rock pillars using a synthetic rock mass approach." International Journal of Rock Mechanics and Mining Sciences 72: 199-213.
16. Martin, C. D., et al. (2012). "Scale effects in a synthetic rock mass." Harmonising Rock Engineering and the Environment: 473-478.
17. Poulsen, B. A., et al. (2015). "Convergence of synthetic rock mass modelling and the Hoek-Brown strength criterion." International Journal of Rock Mechanics and Mining Sciences 80: 171-180.
5 结束语
简述了SRM的工作原理和创建过程,总结了一些相关的参考文献。
本文相似文档:
离散断裂网络Discrete Fracture Network (DFN)[P1]
离散断裂网络 (DFN) [P2]: fracture generate
FLAC3D 7.0 新特性简介(P2)---FISH的显著改进