1 引言
大多数的工程岩体分类方法是基于地下采矿和隧道工程的支护设计发展起来的,比如流行的岩体分类方法RMR, Q-System和GSI,相比之下,专为岩石边坡发展的工程岩体分类系统很少,在过去几十年, 边坡工程界一直使用Romana发展的Slope Mass Rating (SMR),这个系统是基于RMR (如下表所示)分类系统改进的。
作者 | 分类名称 | 时间 |
Terzaghi | 定性描述 | 1946 |
Lauffer | 隧道自立时间 | 1958 |
Deere | RQD | 1967 |
Wickham | RSR | 1972 |
Bieniawski | RMR | 1973 |
Barton et al. | Q-System | 1974 |
Laubscher | MRMR | 1976 |
Hoek and Brown | GSI | 1994 |
Palmstrom | RMi | 1995 |
2015年,Barton和Bar(2015)提出了一个改进的Q-System,称为Q-slope,以便岩石工程师快速评估无支护岩石边坡的稳定性。作为《边坡工程》之“工程岩体分类”的部分内容,本文简要介绍Q-Slope.
2 Q-slope方法
Q-slope是一种经验的评估开挖岩石边坡稳定性方法。它允许岩石工程师和工程地质学家在施工过程中,随着岩石质量状况的明显变化而对边坡角度进行可能的调整。通过欧洲、澳大利亚、亚洲和中美洲的案例研究,建立了Q-slope与长期稳定边坡角之间的简单关系。
Q-System已经有40多年的历史, Q-slope是在Q-system的基础上发展起来的,基本输入参数和计算方法与Q-system相同, 主要不同之处是SRF的计算改进。下图红色的区域表示边坡不稳定,绿色的区域表示边坡稳定。
基于503个案例,回归出一个简单的线性关系。
在边坡高度小于30m, 无需支护的情况下,边坡角度beta与Q-slope之间的关系表示为:
对于与这个关系式,可以得出一些边坡角度的临界值。
Q-slope = 10 -> slope angle 85°
Q-slope = 1 -> slope angle 65°
Q-slope = 0.1 -> slope angle 45°
Q-slope = 0.01 -> slope angle 25°
4 参考文献
[1] Barton, N., and Bar, N. (2015). Introducing the Q-slope method and its intended use within civil and mining engineering projects. Future Development of Rock Mechanics, Proceedings of the ISRM Regional Symposium Eurock 2015 & 64th Geomechanics Colloquium, pp157-162, Salzburg, Austria.
[2] Bar, N & Barton, NR (2016) ‘Empirical slope design for hard and soft rocks using Q-slope’, Proceedings of the 50th US Rock Mechanics / Geomechanics Symposium, ARMA 16-384, Houston, Texas, United States of America.
[3] Bar, N, Barton, NR & Ryan, CA (2016) ‘Application of the Q-slope method to highly weathered and saprolitic rocks in Far North Queensland’, Proceedings of the 2016 International Symposium Eurock 2016, Cappdocia, Turkey.
[4] Bar, N. and N. Barton (2017). "The Q-Slope Method for Rock Slope Engineering." Rock Mechanics and Rock Engineering 50(12): 3307-3322.
[5] Bar, N. and N. Barton (2018). "Rock Slope Design using Q-slope and Geophysical Survey Data." Periodica Polytechnica-Civil Engineering 62(4): 893-900.
[6] Barton, NR, Shen, B & Bar, N (2018) ‘Limited heights of vertical cliffs and mountain walls linked to fracturing in deep tunnels – Q-slope application if jointed slopes’, Proceedings of ISRM VIII Brazilian Symposium on Rock Mechanics – SBMR 2018, Salvador, Brazil.
[7] Bar, N & Barton, NR (2018) ‘Q-Slope: An Empirical Rock Slope Engineering Approach in Australia‘, Australian Geomechanics Journal, Vol 53(4), pp73-86, AGS.
[8] Barton, NR, & Bar, N (2019) ‘The Q-Slope Method for Rock Slope Engineering in Faulted Rocks and Fault Zones’, Proceedings of the 14th International Congress of Rock Mechanics, Iguassu Falls, Brazil.
[9] Bar, N & Barton, NR (2020) ‘Q-slope addressing ice wedging and freeze-thaw effects in arctic and alpine environments’, Proceedings of the ISRM International Symposium Eurock 2020 – Hard Rock Engineering, Trondheim, Norway.
相关文章:
Deere's RQD---现代岩体工程分类方法的基石 (Part II)
岩体不连续的剪切强度 | Barton-Bandis Model
岩体变形模量的估算---Python实现
岩体强度计算: RMi---Rock Mass index
工程岩体分类的简要回顾