首页/文章/ 详情

新的Cadanav方法 论---基于三维轨迹模拟的落石危险区域划分[11/6/2020]

2年前浏览1317


1 论文

New Cadanav Methodology for Rock Fall Hazard Zoning Based on 3D Trajectory Modelling 新的Cadanav方法 论---基于三维轨迹模拟的落石危险区域划分


Abstract: Most rock fall hazard zoning methodologies are currently based on trajectory modelling, usually performed along 2D slope profiles. For many topographic configurations, this approach cannot provide a realistic description of the way rock fall trajectories and, ultimately, hazard are spatially distributed all over a slope. This paper presents a new methodology for rock fall hazard zoning, directly applicable to 3D topographies, starting from 3D trajectory simulation results. The procedure is an extension of the Cadanav methodology introduced for hazard zoning along 2D slope profiles. As such, it is fully quantitative and attempts at reducing as much as possible uncertainties and subjective elements affecting current methods for rock fall hazard analysis and zoning. It is also among the first to introduce a “fully-coupled” rock fall intensity-frequency approach. Hazard is estimated by means of “hazard curves”, described at each point of the slope by rock fall intensity-return period couples. These curves may be superimposed on any intensity-return period diagram prescribed in national or regional land use planning regulations, in order to determine which hazardous condition prevails at each point of the slope. The application of the new Cadanav methodology is illustrated for both a theoretical case of simple topography underlying a linear cliff and a real configuration involving a complex topography, characterised by strong three-dimensional features affecting the paths of the blocks. For all topographic models, results obtained for several scenarios involving either localised or diffuse source areas proved that the methodology performs extremely well, providing objective and reproducible results based on a rigorous combination of rock fall energy and return period. Additional tests and real case studies are currently under investigation, for strengthening even further the validation of the approach and extend its applicability to even more complex rock fall scenarios.

Keywords: rock fall; 3D rock fall modelling; hazard assessment; hazard zoning; land use planning

摘要:目前大多数岩体崩落危险区域划分方法都是基于轨迹建模,通常沿着二维坡面进行。对于许多地形构造来说,这种方法不能真实地描述岩体崩落轨迹和最终危害在整个斜坡上的空间分布方式。本文从三维轨迹模拟结果出发,提出了一种直接适用于三维地形的岩体崩落危险区划分的新方法。该程序是Cadanav方法的扩展,引入了沿二维坡面的危险区域划分。因此它是完全定量的,并试图尽可能地减少不确定性和主观因素影响现有的岩石崩落危险分析和分区方法。它也是最早引入 "完全耦合 "的岩体崩落强度-频率方法。通过 "危险曲线 "来估计危险,在斜坡的每一点上用岩崩强度-回旋周期耦合来描述。这些曲线可叠加在国家或地区土地利用规划法规规定的任何强度-回落周期图上,以确定坡面各点的危险状况。新的Cadanav方法的应用,在理论上有两种情况,一种是简单的地形,其基础是线性的悬崖,另一种是涉及复杂地形的实际配置,其特点是有强烈的三维特征影响块体路径。对于所有的地形模型,在涉及局部使用源区的几种情况下获得的结果证明,该方法表现得非常好,在严格结合岩体崩落能量和返回周期的基础上,提供了客观和可重复的结果。目前正在进行更多的试验和实际案例研究,以进一步加强对该方法的验证,并将其适用性扩展到更复杂的岩体崩落场景。

关键词:岩体崩塌;三维岩体崩塌模型;危险评估;危险区划;土地利用规划


2 相关文献

[1] A regional methodology for rockfall hazard assessment in the hazard prevention map of Catalonia 1:25,000. A geomorphological approach

[2] An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree

[3] A methodology for physically based rockfall hazard assessment

[4] Preliminary assessment of rockfall hazard based on GIS data

[5] Analysis of rockfall hazards

[6] The assessment of rockfall hazard at the base of talus slopes

[7] Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California 

[8] A new rockfall hazard assessment methodology for open-pit coal mines

Quantitative risk assessment in a rockfall-prone area: the case study of the Crolles municipality

[9] Rockfall rating systems

[10] An approach for evaluating the role of protection measures in rockfall hazard zoning based on the Swiss experience

Note: '相关文献' 是按照Google的排序算法产生出来的.


3 参考文献

[1] Guzzetti, F. Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol. 2000, 58, 89–107.


[2] Crosta, G.B.; Agliardi, F. A methodology for physically based rockfall hazard assessment. Nat. Hazards Earth Syst. Sci. 2003, 3, 407–422. 


[3] Scavia, C.; Barbero, M.; Castelli, M.; Marchelli, M.; Peila, D.; Torsello, G.; Vallero, G. Evaluating Rockfall Risk: Some Critical Aspects. Geosciences 2020, 10, 98.


[4] Fell, R.; Ho, K.K.S.; Lacasse, S.; Leroi, E. A framework for landslide risk assessment and management. In Landslide Risk Management; Taylor & Francis Group: London, UK, 2005; pp. 3–25.


[5] Jaboyedoff, M.; Dudt, J.P.; Labiouse, V. An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Nat. Hazards Earth Syst. Sci. 2005, 5, 621–632.


[6] Guzzetti, F.; Crosta, G.; Detti, R.; Agliardi, F. STONE: A computer program for the three-dimensional simulation of rock-falls. Comput. Geosci. 2002, 28, 1079–1093. 


[7] Stevens, W.D. RocFall: A Tool for probabilistic analysis, design of remedial measures and prediction of rockfalls. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 1998.


岩石崩落分析(Analysis of Rockfall)方法简述

岩土边坡的破坏类型(C3)(Failure types of slope)

岩石锚杆和锚索(Rockbolts and Cables)

不稳定边坡的防护和治理措施

GIIC-UDEC操作教程(2)---岩石滚落


来源:计算岩土力学
Marc岩土理论试验
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2022-10-17
最近编辑:2年前
计算岩土力学
传播岩土工程教育理念、工程分析...
获赞 149粉丝 1071文章 1782课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈