1 引言
在《地面激光扫描仪(Terrestrial Laser Scanner)在岩土工程中的应用(1)---Rockfall》中,主要回顾了TLS在岩石崩落和滑坡中的应用。在这些工程应用中,通过TLS获得的数据建立三维模型,然后分析块体形状和大小,崩落轨迹,监测坡体 位移等。随着高精度三维TLS的出现,TLS的应用从宏观发展到微观,其中一个应用方向是确定岩体的节理粗糙度系数JRC(joint roughness coefficient)。岩石节理的粗糙度是岩体力学模型一个重要的输入参数。为了可靠地计算节理粗糙度指数,需要对节理表面进行充分的描述。为了对这个研究方向进行客观的回顾,更新了数据集terrestrial laser scanner.txt,新增了大约160篇相关论文。
2 JRC确定方法回顾
节理粗糙度系数JRC是Barton and Choubey(1977)根据节理剖面形状提出的一个经验估计值,如下图所示。
JRC用来计算节理面的抗剪强度,如下式所示。这个关系式被广泛应用于现代岩石工程数值分析软件中。
其中,
JRC: 节理粗糙度系数(joint roughness coefficient)
σn: 作用在节理面上的法向应力
JCS: 节理面抗压强度(joint compressive strength)
φr: 滑动面的残余摩擦
JRC的值通过与上面的标准剖面比较来估算。如果不能通过节理表面直接测量JRC的值,可以使用下图获得JRC,该图显示了JRC测量剖面长度和粗糙度深度的变化关系。
JRC也可以通过剪切试验反分析得出。
3 使用TLS确定JRC
从目前的文献回顾中,Haneberg, W. C. (2007)最先使用TLS确定JRC的值,这篇论文给出了非常详细的操作步骤。更多这方面的研究见后面列出的参考文献,使用的方法大同小异,在此不再作讨论。另一个更有趣的研究方向是使用TLS确定岩桥和建立离散断裂网络DFN, 如Spreafico, M. C., et al. (2017)。TLS可用于地表露头的断裂网络特征,以便从三维点云数据中提取重要的断裂参数,如方向、强度、贯通度和粗糙度。这种方法优于传统的野外技术,因为它更加快速,而且还可以深入到使用罗盘和尺子无法测量的露头部分。我们将在后续的文章中继续讨论这些内容。
4 参考文献
[1] Spreafico, M. C., et al. (2017). "Intact rock bridge breakage and rock mass fragmentation upon failure: quantification using remote sensing techniques." Photogrammetric Record 32(160): 513-536.
[2] Mills, G., Fotopoulos, G., (2013). On the estimation of geological surface roughness from terrestrial laser scanner point clouds. Geosphere 9 (5), 1410–1416.
[3] Ge, Y. F., et al. (2015). "A Description for Rock Joint Roughness Based on Terrestrial Laser Scanner and Image Analysis." Scientific Reports 5
[4] Abolfazli, M. and A. Fahimifar (2020). "An investigation on the correlation between the joint roughness coefficient (JRC) and joint roughness parameters." Construction and Building Materials.、
[5] Bitenc, M., et al. (2015). Estimating joint roughness using wavelet-based denoised terrestrial laser scanning data. ISRM Regional Symposium, EUROCK 2015.
[6] Bitenc, M., et al. (2015). Quantification of rock joint roughness using terrestrial laser scanning. Engineering Geology for Society and Territory - Volume 6: Applied Geology for Major Engineering Projects.
[7] Bitenc, M., et al. (2015). Evaluation of wavelet denoising methods for small-scale joint roughness estimation using terrestrial laser scanning. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.
[8] García-Luna, R., et al. (2020). Characterization of joint roughness using long-range terrestrial photogrammetry. ISRM International Symposium - EUROCK 2020.
[9] Ünlüsoy, D. and M. L. Süzen (2020). "A new method for automated estimation of joint roughness coefficient for 2D surface profiles using power spectral density." International Journal of Rock Mechanics and Mining Sciences.
[10] Tam, C. C. Y., et al. (2011). "Calibration of Rock Joint Roughness and Shear Strength with the Use of 3D Laser Scanning Technique." HKIE Transactions Hong Kong Institution of Engineers.
[11] Salvini, R., et al. (2020). "Evaluation of the Use of UAV Photogrammetry for Rock Discontinuity Roughness Characterization." Rock Mechanics and Rock Engineering.
[12] Marsch, K., et al. (2020). "On the usability of different optical measuring techniques for joint roughness evaluation." Bulletin of Engineering Geology and the Environment.
[13] Haneberg, W. C. (2007). Directional roughness profiles from three-dimensional photogrammetric or laser scanner point clouds. Proceedings of the 1st Canada-US Rock Mechanics Symposium - Rock Mechanics Meeting Society's Challenges and Demands.
[14] Ge, Y., et al. (2013). Error analysis of sampling spacing on roughness of rock joint based on three dimensional laser scanning testing. 47th US Rock Mechanics / Geomechanics Symposium 2013.
[15] García-Luna, R., et al. (2020). Characterization of joint roughness using long-range terrestrial photogrammetry. ISRM International Symposium - EUROCK 2020.
相关文章,在仿真秀官网搜索:
地面激光扫描仪在岩土工程中的应用(1)---Rockfall
岩体不连续的剪切强度 | Barton-Bandis Model
极限平衡分析中Barton-Bandis 模型的输入参数