1 引言
Atlas Copco是世界知名的采矿设备供应商,为丘基卡马塔铜矿(Chuquicamata Mine)的地下开采提供采矿设备和员工培训。这个崩落采矿法视频由Atlas Copco制作,它以动画的形式展示了崩落采矿的工作流程。
2 崩落采矿的力学机理
崩落采矿力学机理最经典的论述参看《Brady, B. H. G. and E. T. Brown (2006). Rock Mechanics for underground mining : Third edition》, 近年来崩落采矿力学机理最新的研究方向是以Itasca为代表的SRM和IMASS本构模型,目前崩落采矿的数据集中在block caving.txt 和 chuquicamata.txt两个文档内。
3 参考文献
[1] A.Vyazmensky., D. Stead, D. Elmo and A. Moss. 2010. Numerical Analysis of Block Caving Induced Instability in Large Open Pit Slopes: A Finite Element / Discrete Element Approach. Rock Mechanics and Rock Engineering. Vol. 43(1). Pages 21-39.
[2] Mcnearny, R. L. and J. F. Abel (1993). "Large-Scale 2-Dimensional Block Caving Model Tests." International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 30(2): 93-109.
[3] Kendorski, F., Cummings, R., Bieniawski, Z.T. and Skinner, E. 1983. Rock mass classification for block caving mine drift support. Proc. 5th congr. Int. Soc. Rock Mech., Melbourne, B51-B63. Rotterdam: Balkema.
[4] Hurtado, J. P., et al. (2014). "Shock losses characterization of ventilation circuits for block caving production levels." Tunnelling and Underground Space Technology 41(0): 88-94.
[5] Rafiee, R., et al. (2015). "Determination and Assessment of Parameters Influencing Rock Mass Cavability in Block Caving Mines Using the Probabilistic Rock Engineering System." Rock Mechanics and Rock Engineering 48(3): 1207-1220.
[6] Rafiee, R., et al. (2018). "Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines." International Journal of Rock Mechanics and Mining Sciences 105: 22-27.
[7] Eadie, B.A. 2002. Modelling primary and secondary fragmentation for block caving. PhD Thesis, University of Queensland, Brisbane.
[8] Esci, L., Dutko, M. 2003. Large scale fracturing and rock flow using discrete element method, 2D application for block caving. In: Numerical Methods in Continuum Mechanics, Zilina, Slovak Republic.
[9] Rogers S., D. Elmo, G. Webb and A. Catalan. 2014. Volumetric fracture intensity measurement for improved rock mass characterisation and fragmentation assessment in block caving operations. Rock Mechanics and Rock Engineering. Vol 48(2), pp. 633-649.
[10] Rogers S., D. Elmo, G. Webb and A. Catalan. 2013. Volumetric fracture intensity measurement for improved rock mass characterisation and fragmentation assessment in block caving operations. Proc. 47th US Rock Mechanics Symposium, San Francisco, CA, June 27-30, 2013. Paper 13-487.
[11] Dorador L., E. Eberhardt and D. Elmo. 2015. Influence Block Strength and Veining on Secondary Fragmentation Related to Block Caving.Proceedings of the 13th ISRM Congress. Montreal, May 10-13th. Paper 806.
[12] Liu Y., S. Nadolski, D. Elmo, B. Klein and M. Scoble. 2015. Use of digital imaging processing techniques to characterise block caving secondary fragmentation and implications for a proposed Cave-to-Mill approach. Proc. 49th U.S. Rock Mechanics Symposium. San Francisco, CA, June 27-30, 2015. Paper 9.
[13] Nadolski S., Y. Liu, B. Klein, D. Elmo, M. Scoble and J. Scholar. 2016. Investigation into the Implementation of Sensor-based Ore Sorting Systems at a Block Caving Operation. Seventh International Conference & Exhibition on Mass Mining - MassMin 2016.
[14] Brown, E. T. “Block Caving Geomechanics (The International Caving Study I, 1997-2000). University of Queensland, JKMRC Monograph Series in Mining and Mineral Processing, Vol. 3. Indooroopilly, Australia: JKMRC (2003).
[15] Li, H., C. O’Connor and R. Brummer. 3DEC Numerical Modelling of Block Caving on the Stability of Key Infrastructure at Oyu Tolgoi Mine, Itasca Consulting Canada Inc., Sudbury, Technical Memorandum, November 12 2008.
[16] McNearny, R. L., and J. F. Abel, Jr. “Large-Scale Two-Dimensional Block Caving Model Tests,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 30(2), 93-109 (1993). Meng, G., et al. “Interpretation of In-Situ Stress at Baihetan Project,” in Proceedings of the 44th U.S.RockMechanicsSymposium/5thU.S.-CanadaRockMechanicsSymposium(SaltLakeCity, Utah, June 2010), paper no. 10-121.
[17] Woo, K.-S., et al. “Integration of Field Characterisation, Mine Production and InSAR Monitoring Data to Constrain and Calibrate 3-D Numerical Modelling of Block Caving-Induced Subsidence,” Int. J. Rock Mech. Min. Sci., 53, 166-178 (2012).
[18] Elmo, D., Vyazmensky, A., Stead, D., Rance, J. R. (2008). Numerical analysis of pit wall deformation induced by block caving mining: A combined FEM/DEM - DFN synthetic rock mass approach. In Schunnesson H, Nordlund E. (eds.), 5th International Conference and Exhibition on Mass Mining. Sweden, Lule氓 University of Technology Press. pp.1073-1082.
[19] Noroozi, M. (2018) Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines (105) 22-27. International Journal of Rock Mechanics and Mining Sciences.
[20] Elmo, D., Vyazmensky, A., Stead, D., Rance, J. R. 2007a. A hybrid FEM/DEM approach to model the interaction between open pit and underground block caving mining. In: Proceedings of the 1 st Canadian-US Rock Mechanics Symposium, Vancouver, Canada, Vol 2, 1287-1294.
相关文章,在仿真秀官网搜索:
Chuquicamata(丘基卡马塔)露天矿岩石力学研究
代表性元素体积REV (Representative Elemental Volume)
Intact Strength: 原岩强度的微观尺寸效应
IMASS---FLAC3D和3DEC新的本构模型(1)
IMASS---FLAC3D和3DEC新的本构模型(2)