首页/文章/ 详情

[书] 预应力混凝土分析与设计: 基本原理by A.E. Naaman (2)

2年前浏览1953

1 引言

在<[书] 预应力混凝土分析与设计: 基本原理by A.E. Naaman>中介绍了这本书的目录Chapter 1到Chapter 4. 与其它钢筋混凝土结构设计教材相比, 这本书的最大特点是可以作为一个索引, 去探索其它与之相关的内容, 因此这个笔记接着介绍Chapter 5 到Chapter 8.

目录(TABLE OF CONTENTS)

Chapter 5. Flexure: Ultimate Strength Analysis and Design

5.1 Load-Deflection Response

    5 .1.1 RC Versus PC at Ultimate

5.2 Terminology

5.3 Flexural Types of Failures

5.4 Special Notation

5.5 General Criteria for Ultimate Strength Design of Bending Members

    5.5.1 Design Criteria

    5.5.2 Minimum Reinforcement or Minimum Moment Resistance: Code Recommendations

    5.5.3 ACI Code Provisions for Tension-Controlled, Transition, and Compression-Controlled Sections at Increasing Levels of Reinforcement

    5.5.4 AASHTO LRFD Recommendation on Maximum Reinforcement

5.6 Background for Analysis of Sections at Ultimate

    5.6.1 Objective-Assumptions

    5.6.2 Satisfying Equilibrium

5.7 Nominal Bending Resistance: Mathematical Formulation for Rectangular Section or Rectangular Section Behavior -Under-Reinforced and Tension-Controlled

    5.7.1 Force Equilibrium

    5.7.2 Moment Equilibrium

    5.7.3 Solution Procedure

5.8 Example: Nominal Bending Resistance ofa Rectangular Section

    5.8.1 Partially Prestressed Section

    5.8.2 Fully Prestressed Section

    5.8.3 Unbonded Tendons

5.9 Nominal Bending Resistance: Mathematical Formulation for T-Section Behavior of Flanged Section

    5.9.1 Condition for T-Section Behavior

    5.9.2 Fully Prestressed Section

    5.9.3 Partially Prestressed Section

    5.9.4 Remark

5.10 Example: Nominal Bending Resistance ofT Section

    5.10.1 Partially Prestressed Section

    5.10.2 Fully Prestressed Section

    5.10.3 Unbonded Tendons

    5.10.4 Odd Case

5.11 Stress in Prestressing Steel at Nominal Bending Resistance

    5.11.1 fps per ACT Code

    5.11.2 fps per AASHTO LRFD Specification for Bridge Design

    5.11.3 Author's Recommendation

5.12 Nominal Bending Resistance: Under-Reinforced Section, AASHTO LRFD Code

    5.12.1 Equilibrium Equations for Rectangular and Flanged Sections

    5.12.2 Solution for Members with Bonded Tendons

    5.12.3 Solution for Members with Unbonded Tendons

    5.12.4 Solution for Members with Both Bonded and Unbonded Tendons

    5.12.5 Example: PPC (Partially Prestressed Concrete) Rectangular Section with Bonded Tendons (AASHTO)

    5.12.6 Example: PPC (Partially Prestressed Concrete) T Section with Bonded Tendons (AASHTO)

5.13 Nominal Moment Resistance: Over-Reinforced and Non Tension-Controlled Sections

    5.13.1 ACT Code

    5.13.2 AASHTO LRFD

    5.13.3 Example of Over-Reinforced Section as per AASHTO LRFD

5.14 Concept of Reinforcing Index

    5.14.1 Definitions

    5.14.2 Meaning of me

    5.14.3 Useful Relationships

    5.14.4 Relationship between Reinforcement Ratio, Reinforcing Index, and c/de

5.15 Justification for the Definition of We and de and Their Relation to the Limitations on Levels of Reinforcement and Moment Redistribution

    5.15.1 Reinforced Concrete

    5.15.2 Prestressed Concrete

    5.15.3 Partially Prestressed Concrete

5.16 Derivation of Minimum Reinforcement Ratio, Minimum Reinforcing Index, or Minimum c/de

    5.16.1 Approximation: Minimum Reinforcement Ratio for Prestressed Concrete

    5.16.2 Minimum Reinforcing Index for RC, PC, and PPC

    5.16.3 Minimum c/de Ratio for RC, PC, and PPC Rectangular Sections

5.17 Satisfying Ultimate Strength Design Requirements

    5.17.1 Basis for Ultimate Strength Design (USD)

    5.17.2 Possible Remedies to Satisfy Inadequate Nominal Bending Resistance

5.18 Example: Analysis or Investigation Checking for All Ultimate Strength Design Criteria

5.19 Reinforcement Design for Ultimate Strength

    5.19.1 Example: Reinforcement Design for Nominal Resistance - Rectangular Section

    5.19.2 Example: Reinforcement Design for Nominal Resistance -T Section

5.20 Composite Beams

5.21 Continuous Beams and Moment Redistribution

5.22 Concluding Remarks

5.23 Additional Design Examples Based on USD

    5.23.1 Example 1: Analysis with Unbonded Tendons 

    5.23.2 Example 2: Given Aps, Design for As Based on USD - Unbonded Tendons

    5.23.3 Example 3: Given Aps, Design for Aps Based on USD - Unbonded Tendons

    5.23.4 Example 4: Given Aps, Design for Aps Based on USD - Bonded Tendons

Chapter 6. Design for Shear and Torsion

6.1 Introduction

6.2 Shear Design

6.3 Prestressed Versus Reinforced Concrete in Shear

6.4 Diagonal Tension in Uncracked Sections

6.5 Shear Stresses in Uncracked Sections

6.6 Shear Cracking Behavior

6.7 Shear Reinforcement after Cracking

6.8 ACI Code Design Criteria for Shear

    6.8.1 Basic Approach

    6.8.2 Shear Strength Provided by Concrete

    6.8.3 Required Area of Shear Reinforcement

    6.8.4 Limitations and Special Cases

    6.8.5 Critical Sections for Shear 

6.9 Design Expedients

6.10 Example: Design of Shear Reinforcement

    6.10.1 Elaborate Approach to Determine v c    

    6.10.2 Alternate Conservative Approach to Determine Ve

    6.10.3 Design for Increased Live Load: Partially Prestressed Beam

6.11 Derivation of Concrete Nominal Shear Strength Equations (ACI Code)

6.12 AASHTO General Procedure for Shear Design

    6.12.1 General Sectional Procedure for Shear Design

    6.12.2 Special Considerations

    6.12.3 Example: Shear Design by AASHTO LRFD Code

6.13 Torsion and Torsion Design

6.14 Behavior under Pure Torsion

6.15 Background to Stress Analysis and Design for Torsion

    6.15.1 Torsional Stresses

    6.15.2 Torsional Cracking Strength

    6.15.3 Torsional Resistance after Cracking

    6.15.4 Combined Loading

    6.15.5 Design Theories for Torsion and Code Related Approaches

6.16 Design for Torsion by the 2002 ACI Code

    6.16.1 Definition of Section Parameters

    6.16.2 Basic Assumptions and Design Strategy

    6.16.3 Condition for Consideration of Torsion in Design

    6.16.4 Critical Section for Torsion

    6.16.5 Maximum Allowable Torsional Moment Strength

    6.16.6 Transverse Reinforcement Design

    6.16. 7 Longitudinal Torsion Reinforcement

    6.16.8 Combining Shear and Torsion Reinforcement    

    6.16.9 Minimum Torsion Reinforcement

    6.16.10 Spacing and Detailing

    6.16.11 Type of Torsion Reinforcement

    6.16.12 Design Steps for Combined Torsion and Shear

6.17 Example: Torsion Design of a Prestressed Beam

6.18 Shear and Torsion in Partially Prestressed Members

Chapter 7. Deflection Computation and Control

7.1 Serviceability

7.2 Deflection: Types and Characteristics

    7.2.1 Terminology /Notation

    7.2.2 Key Variables Affecting Deflections in a Given Beam

7.3 Theoretical Deflection Derivations

    7.3.1 Moment-Area Theorems

    7.3.2 Example

7.4 Short-Term Deflections in Prestressed Members

    7.4.1 Uncracked Members

    7.4.2 Cracked Members

7.5 Background to Understanding Long-Term Deflection

7.6 Additional Long-Term Deflection: Simplified Prediction Methods

    7.6.1 Additional Long-Term Deflection Using ACI Code Multiplier

    7.6.2 Additional Long-Term Deflection Using Branson's Multipliers

    7.6.3 Additional Long-Term Deflection Using Martin's Multiplier

    7.6.4 Additional Long-Term Deflection: Heuristic or "Rule of Thumb" Method

    7.6.5 Discussion

7.7 Deflection Limitations

7.8 Strategy for Checking Deflection Criteria

7.9 Example: Deflection of Uncracked or Cracked Prestressed Beam 

    7.9.1 Fully Pres tressed Beam - Un cracked under Full Service Load

    7.9.2 Partially Prestressed Beam

7.10 Integrating the Modulus of Concrete into Time-Dependent Deflection Calculations

    7.10.1 Age-Adjusted Effective Modulus

    7.10.2 Equivalent Modulus

    7.10.3 Equivalent Cyclic-Dependent Modulus

7.11 Long-Term Deflection by Incremental Time Steps

    7.11.1 Theoretical Approach

    7.11.2 Simplified C-Line Approach

7.12 Example: Time-Dependent Deflection Using the C-Line Approach

7.13 Example: Comparison of Long-Term Deflections Predicted from Different Methods

7.14 Deflection Control

7.15 Concluding Remarks  

Chapter 8. Computation of Prestress Losses

8.1 Sources of Loss of Prestress

8.2 Total Losses in Pretensioned Members

8.3 Total Losses in Posttensioned Members

8.4 Methods for Estimating Prestress Losses

8.5 Lump Sum Estimate of Total Losses

    8.5.1 Background

    8.5.2 Lump Sum Estimate of Prestress Loss: AASHTO LRFD

8.6 Separate Lump Sum Estimate of Each Time-Dependent Loss -AASHTO LRFD

    8.6.1 Total Loss Due to Shrinkage

    8.6.2 Total Loss Due to Creep

    8.6.3 Total Loss Due to Relaxation

    8.6.4 Losses for Deflection Calculations

    8.6.5 Example: Losses Due to Relaxation

8.7 Loss Due to Elastic Shortening

    8.7.1 Pretensioned Construction: Approximate Method and AASHTO LRFD

    8.7.2 Pretensioned Construction: Accurate Method

    8.7.3 Posttensioned Construction: AASHTO LRFD

    8.7.4 Posttensioned Construction: Accurate Method

8.8 Example: Elastic Shortening Loss in Pretensioned Beam

8.9 Example: Computation of Prestress Losses for a Pretensioned Beam by Lump Sum Methods

    8.9.1 Lump Sum Estimate of Total Losses by AASHTO LRFD

    8.9.2 Lump Sum Estimates of Separate Losses by AASHTO LRFD

8.10 Example: Typical Stress History in Strands

8.11 Time-Dependent Loss Due to Steel Relaxation

8.12 Time-Dependent Loss Due to Shrinkage

    8.12.1 Example: Shrinkage Loss Assuming No Other Loss Occurs

8.13 Time-Dependent Loss Due to Creep

    8.13.1 Example: Creep Loss Assuming No Other Loss Occurs

8.14 Prestress Losses by the Time-Step Method

8.15 Example: Computation of Pres tress Losses for a Pretensioned Beam by the Time-Step Method

8.16 Loss Due to Friction

    8.16.1 Analytical Formulation

    8.16.2 Graphical Representation

    8.16.3 Example: Computation of Losses Due to Friction

8.17 Loss Due to Anchorage Set

    8.17.1 Concept of Area Lost or Equivalent Energy Lost

    8.17.2 Example: Loss Due to Anchorage Set

8.18 Loss Due to Anchorage Set in Short Beams

    8.18.1 Example: Anchorage Set Loss in a Short Beam

8.19 Concluding Remarks                   

Chapter 9. Analysis and Design of Composite Beams

Chapter 10. Continuous Beams and Indeterminate Structures

Chapter 11. Prestressed Concrete Slabs

Chapter 12. Analysis and Design of Tensile Members

Chapter 13. Analysis and Design of Compression Members

Chapter 14. Prestressed Concrete Bridges

Chapter 15. Strut-and-Tie Modeling

Appendix A List of Symbols

Appendix B Unit Conversions

Appendix C Typical Post-Tensioning Systems

Appendix D Answers to Selected Problems

Appendix E Typical Precast / Prestressed Beams


关键词: 预应力

相关文章,在仿真秀官网搜索:

预应力混凝土结构的概念(Prestressed Concrete)

预加应力的方法与设备(Prestressed Concrete)

预应力混凝土受弯构件设计计算方法

预应力混凝土受弯构件受力及工作阶段

持久状况计算

 

来源:计算岩土力学
ACTSystemMathematica
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2022-11-19
最近编辑:2年前
计算岩土力学
传播岩土工程教育理念、工程分析...
获赞 150粉丝 1102文章 1782课程 0
点赞
收藏
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈