1 引言
尽管按照Goodman and Bray(1976)的分类, 倾倒破坏分为三种形式: (a) Block toppling; (b) Flexural toppling; (c) Block flexure toppling,但真实的滑坡倾倒破坏也常常伴随著着块体的滑动(Sliding)。
相关文章,在仿真秀官网搜索:
屈曲倾倒破坏(flexural toppling failure)
岩石边坡倾倒破坏之块体倾倒(Block Toppling)数据集
岩石边坡工程课程---倾倒破坏(Toppling Failure)分析(C9)
本文分析了不同尺寸和性质的单个块体在不同角度边坡上的稳定性,讨论了滑动和倾倒破坏模式。
2 破坏模式
Wyllie在他的书中讨论了单个块体在边坡上的稳定性[Wyllie, D.C. (2018) Rock Slope Engineering Civil Applications. Fifth Edition. 621p.]以及滑动和倾倒破坏模式的简单识别方法,如下图所示。
图(a)所示的是一个斜面上的块体,块体的属性有重量W以及几何尺寸; 图(b)所示的块体滑动和倾倒的条件,一个块体是否滑动或倾倒,不仅取决于边坡角度和块体与坡面的内摩擦角,同时也取决于块体的宽高比。Wyllie按照不同变化条件,给出了四种可能的模式:稳定、仅滑动、仅倾倒、滑动和倾倒。下面使用数值模拟方法分析这四种模式。
3 模拟过程
假定块体密度为2000 kg/m^3,节理剪切刚度和法向刚度均为10 MPa/m,块体宽度为10m, [fi]为变化的内摩擦角。
block property density 2e-3
block contact material-table default property stiffness-normal 10 ...
stiffness-shear 10 friction [fi]
model gravity 0 0 -10
model large-strain on
(1) 稳定状态(Stable Block)
在稳定状态下,边坡角小于内摩擦角,宽高比[factor = 1],使用的参数:块体高度10m,内摩擦角40.1°, 边坡角40°。模拟结果显示,块体刚开始出现少许滑动,但最终稳定下来,说明块体是稳定的。
(2) 滑动状态(Sliding only)
在滑动状态下,边坡角大于内摩擦角,宽高比[factor = 2],使用的参数:块体高度5m,内摩擦角20°, 边坡角40°。模拟结果显示,块体一直在沿着边坡面滑动,没有迹象停下。
(3) 倾倒状态(Toppling only)
在倾倒状态下,边坡角小于内摩擦角,宽高比[factor = 0.4],使用的参数:块体高度25m,内摩擦角50°, 边坡角40°。模拟结果显示,块体出现倾倒破坏。
(4) 滑动倾倒状态(Sliding and Toppling)
在这种状态下,边坡角大于内摩擦角,宽高比[factor = 0.5],使用的参数:块体高度20m,内摩擦角20°, 边坡角40°。模拟结果显示,块体既出现了滑动又发生了倾倒。
取稳定状态下的模型参数,使用极限平衡理论可以求出多块体的稳定性,如下图所示。
4 倾倒破坏分析
基于以前的课件,新的《边坡倾倒破坏分析》增加了如下内容:
(1) Sarma非垂直条分法【适用于岩石边坡稳定性分析的Sarma非垂直条分法(Non-Vertical Slices Method)】分析;
(2) UDEC和3DEC分析;
(3) 概率分析;
(4) Block flexure toppling算法。