光纤放大器的教程包含以下十个部分:
1、光纤中的稀土离子
2、增益和泵浦吸收
3、稳态的自洽解
4、放大的自发发射
5、正向和反向泵浦
6、用于大功率操作的双包层光纤
7、纳秒脉冲光纤放大器
8、超短脉冲光纤放大器
9、光纤放大器噪声
10、多级光纤放大器
接下来是Paschotta 博士关于光纤放大器教程的第7部分:
一个硬限制来自于几兆瓦峰值功率的灾难性自聚焦。如果一个人试图超过这个限制,光纤就会被一枪摧毁。值得注意的是,它不能通过增加光纤的有效模式面积来增加。
在自聚焦变得至关重要之前,自相位调制(SPM) 可能会导致严重的影响,尽管不会导致自毁。它可以显着拓宽光谱——但这对于某些应用来说并不重要,例如在激光材料加工中。
对于窄带光,受激布里渊散射(SBS) 是一个非常有限的因素。即使具有1000 μm 2的相对较大的有效模式面积,也已经达到了 ≈90 dB 的最大可接受布里渊增益,例如,在 1 m 的光纤上仅 400 W(对于足够窄的脉冲)。对于太高的 SBS 增益,会产生强烈的非线性反射,即,功率被送回种子激光器并可能杀死它。如果可以产生具有数千兆赫甚至更高的大光带宽 的种子脉冲,则可以大大增加 SBS 功率限制。不幸的是,使用激光二极管不容易控制
独自的。请注意,仅具有多个峰的光谱是不够的,相隔数千兆赫;应该避免任何波长的任何高功率谱密度。超发光二极管在这方面会更好,但它的峰值功率更低。
最后,受激拉曼散射(SRS) 可能会出现问题。如果拉曼增益超过大约 40 dB,则大量功率将传输到更长波长的组件,通常相对于信号波长偏移数十纳米。通常,如果模式面积相对较大,则该问题始于几米光纤上大约 100 kW 的峰值功率。