手术对于患有严重脊柱侧凸变形的病人而言非常有必要。在椎骨中插入螺钉,并在螺钉内放置固定棒,用于矫正冠状、矢状和横断面上的脊柱侧凸。这类手术的过程相当复杂,并会在螺钉与椎骨接触面上生成很大的力,有时候会导致螺钉在手术中或手术后拔出而给患者带来严重的并发症。因此,制造脊柱设备系统(螺钉、固定棒和手术工具)的公司不断尝试开发新的设备以减小螺钉与椎骨接触面上的力,从而降低患者的风险。
ANSYS Mechanical
不稳定的骨盆骨折经常与高死亡率和发病率联系在一起。有两种不同的固定装置可被应用于骨折治疗。但是由于患者的骨质量和几何结构通常存在很大差异,因此很难评估两种装置在人体内的生物力学性能表现。此外,患者的各种不同姿势也会显著影响两种固定装置和人体骨骼的生物力学性能表现。NTUST相信计算机仿真可以公正有效地解决这一问题。
为了分析不同的骨盆固定技术和人体姿势,NTUST使用ANSYS Workbench开发包含23块人体肌肉和韧带的脊柱-盆骨-股骨复合结构,用以进行结构仿真。非线性接触条件和164个张力弹簧分别用来仿真骨骼植入面、人体肌肉和韧带。对完整模型、骨折模型以及植入了三种骨盆固定装置(包括后段髂骶螺钉、骶骨棒和锁定加压钢板)的骨折模型进行仿真和研究。这样便可提供与人体骨骼的最大应力、不同固定装置的最大应力以及不同固定技术的固定稳定性相关的数据。结果显示所有固定技术都能提供所需的固定稳定性。后段髂骶螺钉和骶骨棒在骨盆应力和植入强度方面都有较好的生物力学性能表现。
NTUST相信这是首个考虑了脊柱-盆骨-股骨复合结构以及骨盆固定装置真实几何结构的模型。此外,数值模型还可用于研究不同的人体姿势(例如上楼、下楼和站立姿势等)的影响。
颈椎(颈部)间盘退行性疾病最常见的症状是颈部疼痛和僵硬。虽然有多种可用的外科方法,由于骨骼几何结构和骨质的显著变化,难以在活体内评估其生物力学效果。此外,过去为颈部开发的数值模型为了缩短计算时间过于简化。
研究人员采用ANSYS Workbench为拥有160块骨骼和软组织以及30块肌肉和韧带的人体上半身建模。超弹性物质可仿真椎间盘,使用仅承受张力的弹簧代表肌肉和韧带。研究人员针对四种情况分析该模型的生物力学性能:完好(无疾病)模型、未治疗的退行性模型、通过前椎间盘移除和脊柱融合手术治疗后的退行性模型、使用人工椎间盘置换手术治疗后的退行性模型。通过比较活动范围、椎间盘最大应力、骨骼最大应力和颈椎修复装置的最大应力,显示出与前椎间盘移除和脊柱融合手术相比,人工椎间盘置换手术能减轻脊柱相邻节段的退行性。
ANSYS Workbench
上述文章来源于ANSYS每年定期举办的名人堂获奖作品,查看更多ANSYS 名人堂 文章可以访问:
http://www.ansys.com/zh-CN/Other/Hall-of-Fame