目前CFD 在多相流模拟应用最广泛的两个模型为欧拉—欧拉拟流体模型和欧拉—拉格朗日离散相模型。但受计算机资源的限制,对于大规模的气固多相流模拟大多采用欧拉—欧拉拟流体模型。该模型是在一定的浓度下,把离散的固体颗粒相看做假想的连续介质,即“拟流体”假设,这样颗粒就具备了与气相相似的动力学特性,也可以用相同形式的流体力学守恒方程加以描述。气固相间的相互作用通过气固曳力予以耦合,其大小决定了气流对固体颗粒的夹带和输送能力及其在床内的运动状态。
以新奥集团煤基低碳能源国家重点室建立的流态化冷态装置为模拟对象(如图1),建立几何模型,内径为286mm,高度为4000mm,模型采用锥形分布板。网格模型采用六面体网格进行划分,效果图如图2 所示。
图1 流态化冷态模拟装置
为了体现对比标准的一致性,本文采用相同的模拟计算条件及模型参数,第一步操作按照表1 所述进行,第二步按照表2 所述进行。
表1 模型对比操作参数
本部分在其他模拟条件不变的基础上,对比两种曳力模型的流场状况,并结合冷态实验的流场流动,筛选出比较适合的曳力模型。
图3 为根据颗粒最小流化速度计算值修正后的Syamlal-O,brien 曳力模型模拟结果,图4 为Gidaspow 曳力模型模拟结果。选取两个数值实验0、0.2、0.4、0.6、0.8、1.0、2.0s 时刻的炉内固含率表示瞬时的流动状况。
由两图分析比较可知,曳力模型选择的不同模拟出的气泡大小与形状有差异。Gidaspow模型模拟出的气泡较Syamlal-O,brien 模型初始气泡更大些,中心射流明显但分布板区流场欠佳。修正后的Syamlal-O,brien 模型存在径向返混,在气泡的作用下形成内循环运动,同时分布板和中心射流均形成气泡,壁面阻力较小时气泡沿壁面上升。对照冷态装置实验结果,可判断修正后的Syamlal-O,brien 模型与实验现象更吻合,故选择修正后的Syamlal-O,brien 模型作为曵力模型进行后续的模拟计算。
按照表2 所述的模拟条件,对三个算例进行计算,同时以相同物性的实验原料进行冷态实验,与模拟结果进行对比验证,主要结果如下:
常用的最小流化速度计算公式为Wen-Yu&Ergun 公式如下:
通过引入雷诺临界准则和阿基米德准则,得到计算最小流化速度的简约公式,经过计算本实验条件下,颗粒的最小流化速度为0.1550m/s。
确定最小流化速度umf 最好方法是通过实验测定。降低流速u 使床层自流化床缓慢的恢复固定床,同时记下相应的气体速度u 和床层压降从而绘制出关系曲线,确定最小流化速度。
实际最小流化速度往往采用从高气流速度向低气流速度进行,通常成其为“下行”实验法。本文经过多次实验验证,最后测得的物料的最小流化速度为0.1510m/s。
CFD 模拟计算时,也采用“下行”实验法,即通过观察床层压降的变化来确定最小流化速度,具体数值为0.1558m/s。
综合分析最小流化状态下的理论计算值、CFD 模拟值及实验值(如表3),模拟值与实验值相比,偏差仅为3.18%,一定程度上说明了模型选择的合理性。理论值和模拟值相差更小,这是因为模拟模型的建立是基于理论公式基础上编写的。
随着流化状态的改善,床内固含率出现不同的变化,直接影响床层压差的变化,因此在模拟和实验过程中,床层压降的监测是十分必要的手段。按照表2 实验条件的叙述,模拟过程中将三个算例依次进行,监测床层各点压力值。图5 为不同时间监测点压力变化曲线,其中1-6s 为初始流化状态下压力随时间变化值(参照Case1 条件),6-12s 为只有分布板进气条件下的压力随时间变化值(参照Case2 条件),12-20s 为分布板、中心管同时进气条件下的压力随时间变化值(参照Case3 条件)。经过计算,第一个算例为1 倍流化数初始流化状态;第二和第三算例为2.2 倍流化状态。
由图5 中的变化曲线可以看出,初始流化状态下,各点压力随时间变化不大,随着进炉气量的增加,床内返混增加,有气泡的产生、聚并、破碎发生,使得各点压力随时间波动,其中1.05m 处为床层未能达到处,所以压力为0 Pa。
将每个算例的不同高度的压力监测值作时间平均处理,将实验值和模拟值进行对比,如图6、图7、图8。
流化床床料在受到气体曳力的条件下呈现流化状态,使床层出现膨胀现象。如果曳力模型选择合理,则膨胀高度更接近于实验膨胀高度,因此床层膨胀高度的对比也能从一定角度验证曳力模型选择的合理性。
PS:由于**栏字数限制,本文只署名了第一作者姓名