有哪些内容 I2C是什么 在消费电子,工业电子等领域,会使用各种类型的芯片,如微控制器,电源管理,显示驱动,传感器,存储器,转换器等,他们有着不同的功能,有时需要快速的进行数据的交互,为了使用最简单的方式使这些芯片互联互通,于是I2C诞生了,I2C(Inter-Integrated Circuit )是一种通用的总线协议。它是由Philips(飞利浦)公司,现NXP(恩智浦)半导体开发的一种简单的双向两线 制 总线协议标准。 对于硬件设计人员来说,只需要2个管脚 ,极少的连接线和面积,就可以实现芯片间的通讯,对于软件开发者来说,可以使用同一个I2C驱动库,来实现实现不同器件的驱动,大大减少了软件的开发时间。极低的工作电流,降低了系统的功耗,完善的应答机制 大大增强通讯的可靠性。 5种速率 I2C协议可以工作在以下5种速率模式下,不同的器件可能支持不同的速率。 超快模式(Ultra-Fast):5Mbps(单向传输) 其中超快模式是单向数据传输 ,通常用于LED、LCD等不需要应答的器件,和正常的I2C操作时序类似,但是只进行写数据 ,不需要考虑ACK应答信号。
在I2C协议的官方文档NXP_UM10204_I2C-bus specification and user manual_Rev.6 ,超快模式和其他模式在3.2和3.1章节分别进行介绍。 4种信号 I2C协议最基础的几种信号:起始、停止、应答和非应答信号 。 I2C协议规定,SCL处于高电平时,SDA由高到低变化,这种信号是起始信号。 I2C协议规定,SCL处于高电平,SDA由低到高变化,这种信号是停止信号。 I2C协议对数据的采样发生在SCL高电平期间 ,除了起始和停止信号,在数据传输期间,SCL为高电平时,SDA必须保持稳定 ,不允许改变,在SCL低电平时才可以进行变化。 I2C最大的一个特点就是有完善的应答机制 ,从机接收到主机的数据时,会回复一个应答信号来通知主机表示“我收到了 ”。 应答信号出现在1个字节传输完成之后,即第9个SCL时钟周期内,此时主机需要释放SDA总线,把总线控制权交给从机,由于上拉电阻的作用,此时总线为高电平,如果从机正确的收到了主机发来的数据,会把SDA拉低,表示应答响应。 使用MCU、FPGA等控制器实现时,需要在第9个SCL时钟周期把SDA设置为高阻输入状态 ,如果读取到SDA为低电平,则表示数据被成功接收到,可以进行下一步操作。 当第9个SCL时钟周期时,SDA保持高电平,表示非应答信号 。 非应答信号可能是主机产生也可能是从机产生,产生非应答信号的情况主要有以下几种: 从机正在执行一些操作,处于忙状态,还没有准备好与主机通讯 主机接收从机数据时,主机产生非应答信号,通知从机数据传输结束,不要再发数据了 读写时序 7位和10位地址 大多数I2C器件支持7位地址 模式,有一些器件还支持10位地址 ,而且两种类型的器件可以连接在同一个I2C总线上,目前10位地址的器件还没有被广泛使用 。 I2C保留字节 I2C读写时起始位之后的第一个字节,除了厂商指定的设备地址外,还有一些保留字节,主要有两组0000 xxx和1111 xxx,保留字节的含义: 上述的10位地址模式,就是使用到了最后一种保留字节 。 第一种广播模式,可以通过写入第二个字节06h来复位I2C总线上所有的从机器件 。具体操作时序可以查看文档NXP_UM10204_I2C-bus specification and user manual_Rev.6 : 3.1.12 Reserved addresses 章节有详细介绍。其中device ID控制字(1111 1xx1),可以读取I2C器件内部的24位器件ID ,通过对照NXP I2C协议器件列表可以查询到器件所属的厂商和型号 。 FPGA实测I2C波形 FPGA实现UART 、SPI 、I2C等串行时序,最常用的实现方式就是状态机大 法 ,将各个步骤分解为各个状态,然后根据不同的状态去控制输出或读取输入,细节方面需要考虑数据的对齐、建立和保持时间、一些异常情况时状态的跳转,不能进入死循环,或卡死在某一个状态。 //general S0_IDLE = 0 , S1_START1 = 1 , S2_CTRL_BYTE1 = 2 , S3_ACK1 = 3 , S4_ADDR = 4 , S5_ACK2 = 5 ,//write: 0-1-2-3-4-5->6-7-13-14 S6W_DATA = 6 , S7W_ACK3 = 7 ,//read: 0-1-2-3-4-5->8-9-10-11-12-13-14 S8R_START2 = 8 , S9R_CTRL_BYTE2 = 9 , S10R_ACK3 = 10 , S11R_DATA = 11 , S12R_NACK = 12 ,//general S13_STOP = 13 , S14_DONE = 14 , S15_ERR = 15 ; output eeprom_scl, inout eeprom_sda, localparam DIR_IN = 1'b 0; localparam DIR_OUT = !DIR_IN; reg dir; reg i2c_sda; reg i2c_scl; assign eeprom_scl = i2c_scl; assign eeprom_sda = (dir == DIR_OUT) ? i2c_sda : 1'b z; wire sda_in = eeprom_sda; 下图的波形是使用Xilinx FPGA对AT24C1024 的驱动,使用片上逻辑分析仪ChipScope抓取的实际波形,AT24C1024B存储空间为1024K Bit = 131072 Byte,存储单元地址位宽为17位。 SPI和I2C的对比 从GPIO占用上来看,I2C占用更少的GPIO ,更节省资源。 I2C有应答响应 机制,数据可靠性更高,SPI 没有应答机制。 I2C速率不会太高 ,最高速率3.4Mbps,SPI可以达到很高的速率。 I2C通过器件地址 来选择从机,从机数量的增加不会导致GPIO的增加,而SPI通过CS选择从机,每增加一个从机就要多占用一个GPIO。 SPI协议 在SCLK边沿进行数据采样,I2C在SCL高电平 期间进行数据采样。官方标准文档下载 1. I2C官方标准文档_UM10204 I2C的官方文档是原飞利浦(Philips)半导体事业部,现恩智浦(NXP)半导体发布的UM10204文档,全文共64页,是目前最权威最详细的I2C协议介绍文章,最新版本Rev. 6发布于20140404,UM10204_4 April 2014: I2C-bus specification and user manual_Rev.6 2. TI:理解I2C文档_SLVA704 TI在2015年发布了一篇SLVA704文档, 全文共8页,精简的概括了I2C协议的电气特性,操作时序,读写时序等,比较适合I2C入门学习。 3. ZLG:I2C总线规范中文版 这篇文档发布于2000年左右,是对飞利浦官方文档UM10204_v2.1的翻译。 I2C协议文档只是最基础的文档,具体寄存器读写操作等操作,还是要结合所使用芯片的数据手册来使用。 ------------ END ------------