首页/文章/ 详情

【学术前沿|窦华书】千禧年大奖难题之一纳维-斯托克斯方程的解的存在性与光滑性的证明

2年前浏览3806

风流知音(FLOWS:Physics & beyond)【学术前沿|窦华书】千禧年大奖难题之一纳维-斯托克斯方程的解的存在性与光滑性的证明  CFDST (2022年5月10日)1018



千禧年大奖难题之一纳维-斯托克斯方程的解的存在性与光滑性的证明 

窦华书

作者简介:窦华书,博士,教授,博士生导师,浙江省引进海外高层次人才特聘教授。1991年博士毕业于北京航空航天大学,然后依次在清华大学、悉尼大学、新加坡国立大学和浙江理工大学工作。期间1994-1996曾访问日本东北大学和日本法政大学。在流体力学研究方向上创造性地提出了能量梯度理论,用以研究流动稳定性和湍流。在国际会议上作邀请报告30余次,被国内外相关著名大学特邀讲学60余次。发表SCI收录论文80余篇,授权发明专利31项;由国际著名出版社Springer出版专著二部(其中一部为合著)。曾获得过国家机械部科技进步二等奖,国家航空总公司科技进步二等奖,国家自然科学奖三等奖,清华大学清华之友优秀青年教师二等奖等。现为美国航空航天学会AIAA Associate Fellow,中国海洋工程学会常务理事、中国力学学会激波与激波管专委会委员、中国工程热物理学会流体机械专委会委员,国家科技部国际合作项目及平台评审专家,在多所著名大学和科研机构担任**教授。最近出版湍流专著:

Hua-Shu Dou, Origin ofTurbulence-Energy Gradient Theory, 2022, Springer ( https://link.springer.com/book/10.1007/978-981-19-0087-7).


美国著名物理学家、诺贝尔奖获得者费曼曾经说过:湍流是经典物理学中最后一个尚未解决的重要问题。从雷诺1883年在曼切斯特做的圆管流动实验开始算起,虽然湍流现象已经被广泛研究了近140年,但是湍流产生的物理机理至今仍不清楚。据传,量子力学奠基人之一、德国著名物理学家、诺贝尔奖获得者海森堡临终前曾在病榻上说过一句话:“当我见到上帝后,我一定要问他两个问题——什么是相对论,什么是湍流。我相信他只对第一个问题应该有了答案”。由此可见,湍流问题的解决难度之大令人难以想象。


纳维-斯托克斯(Navier-Stokes)方程是由法国科学家纳维(1821)和英国科学家斯托克斯(1845)建立的。经过100多年的研究,人们相信Navier-Stokes方程是描述湍流的正确方程。现代Navier-Stokes方程直接数值模拟(DNS)的结果几乎与实验数据完全一致。从工程角度考虑,Navier-Stokes方程描述湍流已满足应用要求。但是,数学家更关心的是纳维-斯托克斯方程的解的存在性与光滑性,这个问题至今没有得到证明。为此,美国Clay数学所在2000年公布的7个千禧年百万美元大奖难题中,Navier-Stokes方程为其中之一。



1934年,法国数学家勒雷(Leray)证明了纳维-斯托克斯问题弱解的存在,此解在流场中平均值上满足纳维-斯托克斯问题,但无法在整个定义域的每一点上满足。现在,数学家想要解决的是纳维-斯托克斯的强解问题,即其解需要在流场中定义域上的每一点上都要满足。用另一种说法,对一给定的起始点流动条件,可以准确预测随时间变化后面发展的任意时刻的流动状况。或者对湍流流动中的任何一点任意时刻的流动,可以精确追溯到它的起始点的流动的起始条件。


美国Clay数学所设定了该问题具体的数学描述[1]:证明或反证下面的问题:在三维的空间及时间下,给定一起始的速度场,存在一矢量的速度场及标量的压力场,为纳维-斯托克斯方程的解,其中速度场及压力场需满足光滑及全局定义的特性。


对转捩流动和湍流流动,我们同时用能量梯度理论和泊松方程分析两种不同的方法证明了Navier-Stokes方程不存在全局域上的光滑解。理论得到了实验结果及数值模拟结果的验证。我们采用能量梯度理论的证明请见文献[2]。下面是采用泊松方程分析方法的证明[3]:


(1)对三维空间的平面channel流动(压力驱动流动),Navier-Stokes方程可以写成下面泊松方程的形式,


2u(x,y,z)=Fx(x,y,z,t),在静止壁面上的边界条件为 u=0,式中u为x方向的速度分量。在整个定义域上,定义源项 Fx(x,y,z,t)>0 and Fx(x,y,z,t)≠0。如果Fx(x,y,z,t)=0,则整个域上流体是静止的,所讨论的问题就没有意义了。对y和z方向,可以写出另外2个速度分量的泊松方程,这里我们只讨论u分量。


给定起始条件,按照要求,这里我们规定起始速度场为一光滑的层流流场。然后,观察流场在扰动作用下的发展和变化,这是层流到湍流的转捩过程中的转捩流动(transitonal flow)的特征。


(2)根据观察(实验和数值模拟),层流流动在扰动与基本流动相互作用下,在足够高的雷诺数下,速度剖面会发生扭曲,畸变。研究发现,在一定的扰动程度下,流场中存在这样的点,Fx(x,y,z,t)=0 (详细发现请见下面文献)。下面用两种观点来解释此处为奇点:(a)Fx(x,y,z,t)=0 这样的点在流场中定义域上是没有定义的,所以在转捩流动中出现的这样的点是流场中的奇点。(b)我们知道,奇点是没有体积的。当流场中 Fx(x,y,z,t)=0 的点形成后,随时间进一步发展,Fx(x,y,z,t)=0 的点在y方向具有一定宽度(宽度大于0),此时利用泊松方程解出的当地速度为 u=0。说明此处流向速度u发生了间断,间断点即为奇点。


由上面论证可知,Fx(x,y,z,t)=0 这样的点是泊松方程(Navier-Stokes方程)在流场中定义域上的奇点。另外, 我们用能量梯度理论也已经精确地证明了,在压力驱动的流动中,这样的点必然发生流向速度的间断[2]。采用两种不同的方法得到的结果可以互相佐证。


(3)Navier-Stokes方程在流场中的奇点处速度导数不存在,所以是没有解的。因此,即使方程在流场中奇点以外的其他点上都有解,但由于奇点处没有解,流场的解是间断的,是不光滑的。我们得到结论:Navier-Stokes方程在转捩流动中是不存在光滑解的。


(4)对湍流流动(turbulence),由于流场中非定常的旋涡的存在,其瞬时流动分布,存在大量的奇点(Fx(x,y,z,t)=0的点)。实际上,湍流的维持就是依靠这些奇点存在而实现的。因此,对湍流流动,Navier-Stokes方程不存在光滑解。


需要指出,上述奇点的出现是因为,三维空间的平面channel流动(plane Poiseuille flow)的泊松方程的源项是不能任意的,必须大于零的(或者小于零,即速度沿x负轴方向流动)。从物理学上考虑,就三维空间的平面channel流动来说,对层流流动和湍流流动,这个给定的源项的约束定义,都是必需的。否则,这个问题就不是 well posed。如果我们讨论的是两个平板间的三维的热传导问题,其泊松方程的源项是可以任意的,而源项为零的点就不是其泊松方程的奇点(因为是具有定义的点)。具有不同的约束性质的这2个问题,不能统一按一般泊松方程的特性来讨论。

 

结论:对转捩流动和湍流流动,纳维-斯托克斯方程的解的存在性与光滑性问题,答案是否定的。

 

参考文献

1.Fefferman, C.L. Existence and Smoothness of the Navier-Stokes Equation; Clay Mathematics Institute: Peterborough, NH, USA,2000; pp. 1–6.

http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation

2.Dou, H.-S., Singularity of Navier-Stokes Equations Leading to Turbulence,  Adv. Appl. Math. Mech., 13(3),2021, 527-553.  

https://doi.org/10.4208/aamm.OA-2020-0063    https://arxiv.org/abs/1805.12053v10  

3.Dou, H.-S., No existence and smoothness of solution of the Navier-Stokes equation , Entropy , 2022 , 24 , 339. https://doi.org/10.3390/e24030339


来源:风流知音
湍流航空航天海洋理论Origin
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2022-09-23
最近编辑:2年前
风流知音
博士 专注空气动力学、流体力学、固体...
获赞 123粉丝 85文章 255课程 2
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈