首页/文章/ 详情

【FCA-Chp-7】第7章 粘弹性(1)

1年前浏览2238

聚合物基体复合材料(PMC)观察到的蠕变行为激起了我们对粘弹性的兴趣,其中,蠕变行为是粘弹性的一种表现形式。材料依赖于时间的响应可以分类为弹性的、粘性的和粘弹性的。对于突加载荷,并且载荷保持不变,弹性材料将经历瞬态变形。

粘弹性材料兼具弹性和粘性材料行为,但是其响应比仅仅将粘性应变加到弹性应变上更复杂。令HHeaviside函数,定义如下

但是变形不能瞬间恢复。

7.1 粘弹性模型:(a) Maxwell(b) Kelvin(c) 标准固体,(d) Maxwell-Kelvin

具有不可恢复粘性流的材料,例如式7.2,称为液体,即使流动非常缓慢。以世纪为时间跨度,玻璃是一种液体材料;中世纪教堂窗玻璃的厚度,底部较厚,顶部较薄,因此揭示了在重力强加的载荷作用下在几个世纪内发生了流动。具有完全可恢复粘性变形的材料,例如式7.3,称为固体。我们知道使用固体材料比液体材料更容易进行结构设计。

请注意,在材料力学课程中引入的常见误解,即大多数结构材料是弹性的。只有完美的晶体材料是弹性的。大多数材料是粘弹性的,如果从足够长的时间周期来观察,或者在足够高的温度下观察。换言之,大多数真实材料是粘弹性的。

对于弹性材料,柔度D是模量E的倒数,两者都是常数,它们的关系如下

对于在时域内的粘弹性材料,柔度称为D(t)并且与随时间变化的弛豫E(t)(相似但非如此简单的方式)有关,将会在7.3节介绍。注意,弛豫E(t)代替模量E。为了帮助7.1节中粘弹性模型的展示,下面介绍柔度与弛豫之间关系的简要推导。当柔度D和弛豫E都是时间的函数时,式7.4简单变为

由于D(t)E(t)都是时间的函数,因此,不可能通过对式7.5进行代数运算得到以其中一个函数明确表示的另一个函数。为了从一个函数得到另一个函数,使用Laplace变换(见7.3节)得到

因为D(s)E(s)都是s的代数函数,并且没有涉及时间t,可以通过代数运算得到

最后,时域内的弛豫是式7.7Laplace逆变换,或

类似的,柔度D(t)可以由弛豫E(t)得到,如下

式中,L[ ]表示Laplace变换,L-1[ ]表示Laplace逆变换。

7.1 粘弹性模型


7.1.1 Maxwell模型

那么,柔度为

为了推导Maxwell模型的弛豫,对式712进行Laplace变换(使用表7.1MATLAB)可得

时,阻尼器不运动,所以也是材料的初始弹性模量。现在,在Laplace域内的弛豫为

在时域内的弛豫通过Laplace逆变换可得(使用表7.1MATLAB)如下

注意,在t = τ时,弛豫衰减到初始值的36.8%,因此,τ称为材料的时间常数。

7.1 部分常用Laplace变换


7.1.2 Kelvin模型

使用式7.8,在Heaviside阶跃函数Dirac函数的帮助下可以写出弛豫函数如下

符号s为复数;符号DtEttEtau为实数;

Dt=expand((1-exp(-t/tau))/E)

Ds=laplace(Dt)

Es=1/Ds/s^2

Et=ilaplace(Es)

7.1.3 标准线性固体

为了具有初始柔度1/E0,在Kelvin模型上添加一个弹簧(图7.1(c))。那么,柔度为

并且

为了得到更好的相关性,更多的弹簧-阻尼单元添加到级数中,如下

7.1.4 Maxwell-Kelvin模型

液体材料的粗略假设是Maxwell-Kelvin模型,也称为四参数模型,由图7.1(d)描述。因为MaxwellKelvin单元连续放置,柔度可以通过两个模型的柔度相加得到,如下

确定一种材料是液体还是固体的另一种方法是观察它的长期变形。如果变形是无限的,则该材料为液体。如果变形最后停止,则该材料为固体。

7.1.5 指数模型

另一种比较流行的代表聚合物相对短期变形的模型是指数模型

参数An由实验数据调整。指数模型的流行是因为它较好地符合聚合物的短时行为,因为符合数据很容易。仅对式7.24两边取对数,然后使用线性回归得到符合的参数。使用式7.9得到的柔度如下

7.1.6 Prony级数

虽然聚合物的短期蠕变和弛豫可以用指数模型较好地描述,随着时间范围变得更长,则需要一个更精确的模型。Prony级数便是这样一个模型,由n个指数衰减组成

Prony级数可以用剪切模量和体积模量(Gk1.12.5节)写为如下形式

7.1.7 标准非线性固体

如果Prony级数使用足够多的项,则可以适合任何材料行为。如果算术操作更困难,则其他模型对于拟合目的效率更高。例如,标准非线性固体模型

7.1.8 非线性指数模型

到目前为止所描述的模型都表示线性粘弹性材料。在粘弹性的背景下,线性意味着模型中的参数不是应力的函数(见7.2.1节)。这表示在任意固定时间的变形可以随着应力的增加而成比例的增大。如果任何一个参数是应力的函数,则材料是非线性粘弹性的。例如,一个非线性指数模型有以下形式

对式7.32两边取对数,得到有2个变量的线性方程

可以在MATLAB中使用多元线性回归算法进行拟合。

尽管大多数材料不是线性粘弹性的,如果结构工作时的应力范围很窄,则材料可以近似认为是线性粘弹性的。

7.1拟合表7.2中的蠕变数据,使用(a) Maxwell模型,(b) 指数模型模型和(c) 标准非线性固体模型(式7.30)。

7.2 蠕变数据(例7.1


为了拟合指数模型,将式7.19写为

实验数据和拟合函数在图7.2中给出。

7.2 粘弹性的匹配:Maxwell模型、指数模型和标准非线性固体模型

7.2 Boltzmann叠加

7.2.1 线性粘弹性材料

如果应用叠加,则粘弹性材料是线性的。即,给定一个应力历史

则应变由下式给出

7.3 应变的Boltzmann叠加

7.2.2 不老化的粘弹性材料

蠕变柔度是材料对应力的响应,并且从施加应力时开始。如果逐渐变化,由式7.39可得

弛豫是

线性粘弹性材料与时间有关的行为是可传递的,意味着在时间时的行为依赖于材料从t = 0加载开始以来所发生的变化。

7.2

可以看出,(b)(a)完全相同,只是发生移动;意味着没有老化。

7.3 对应原理

大多数时候,Laplace变换可以通过解析解得到,只需要使用一个变换表,例如表7.1。对式7.41、式7.42进行Laplace变换得到

将式7.44与式7.45相乘可得

对应原理声明:对于弹性材料可得的所有弹性方程在Laplace域内对于线性粘弹性材料有效。该原理是基础,例如,根据纤维和基体特性,使用标准微观力学方法确定聚合物基体复合材料的蠕变和弛豫,如同7.6节所示。

Laplace域到时域的逆映射

更难计算。部分分式分解[49]是有用的技术,可以将f(s)分解为一些简单的函数,使用解析法可以得到这些简单函数的Laplace逆变换。另一个有用技术是表7.1中定义的卷积定理。同样,极值定理

可以直接在Laplace域内评估材料在时域内初始和最终时刻的响应。另外,Laplace逆变换可以使用[50][8,附录D]中的配置法得到数值解。

Carson变换定义如下

Carson域内,本构方程(式7.41-7.42)变为

Carson域内的上述方程类似于时域内弹性材料的应力-应变方程。此外,柔度和弛豫的关系变为

7.4 频域

傅里叶(Fourier)变换将时域映射到频域。Fourier变换定义如下

它的逆变换如下

对式7.41-7.42应用Fourier变换可得

并且,

使用标准复变分析可得

7.5 谱表示法

Prony级数(式7.26)对聚合物行为提供了物理解释,将其当作一系列Maxwell模型,每个模型有自己的衰减时间。在极限情况下,真实的聚合物具有无限数量的该模量[51],所以

来源:AbaPY
Maxwell复合材料非线性MATLAB材料
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2022-08-31
最近编辑:1年前
KongXH
博士 专注于有限元分析领域,联合创作...
获赞 48粉丝 93文章 58课程 1
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习 福利任务 兑换礼品
下载APP
联系我们
帮助与反馈