Matlab的价值更多的体现在上图中的各式各样的工具箱中,因为这些工具箱toolbox都是实际应用过程中迭代多年才最终应用到工程实践中,其中包括一些最终成型独立出去的大型专业软件。
例如主打多场耦合仿真的comsol最初的版本就是Matlab的有限元求解工具箱FEMLAB;基于Simulink的自动驾驶工具箱Automated Driving Toolbox可以批量基于实车数据构建驾驶场景;Aerospace Toolbox则提供飞行力学相关的各种建模工具和仿真计算方法;Matlab for Deep learning的上手学习难度远远小于Tensorflow等其他深度学习算法包;CFD toolbox for matlab则在流体机械,化工机械等行业有着重要的应用。
总而言之,Matlab可能是应用最为广泛的工业软件,工科神器的称号,绝非浪得虚名。
Matlab被禁用因为高校用户占大多数,因而讨论的热点大多集中在以后用哪种替代软件,能够方便地处理数据,绘制图表。
其实,工业软件更广泛的应用,一直都是西门子,达索,GE,罗罗,普惠,西屋,洛克希德-马丁等工业集团的在产品研发过程的秘密武器,以西门子的仿真平台MindSphere为例,从设备制造,到系统集成,再到最终客户,几乎全部的需求都能在MindSphere平台中实现。
类似的达索有3DEXPERIENCE平台,卖 身海克斯康的MSC虽然慢一步,但也有MSC.Apex平台,而以多物理场为亮点的ANSYS则在买买买的过程中,不断的致力于将自己的亲儿子workbench打造为最好用的工业软件(虽然一直未能成功)。
假设某一天这些工业软件都被禁用了,国内的制造企业是不是真的就毫无还手之力?其实,情况并没有预期的那么糟糕。笔者尝试从自己熟悉的多物理场耦合问题出发,抛砖引玉,从多物理场耦合问题,多物理场耦合仿真软件的发展现状以及当前国内最具可执行性的Plan B计划,这三个方面展开讨论。
二、多物理场耦合问题
过去的几十年中,人们在许多计算学科领域都进行了深入的研究并且取得了一定的研究成果,例如计算流体动力学,计算结构动力学以及计算电磁学等。每一个单独的学科的计算方法也都已经相对比较成熟,能够对大量的问题进行可靠的模拟。
然而,在许多科学研究和工程应用领域里,单一学科的仿真分析已经不能满足人们更详细更准确的要求。在现实世界中,许多现象是多个物理场相互作用不可分割的。例如,多物理场耦合问题中最常见的流固耦合问题,固体结构在流体载荷作用下产生变形或运动,而固体的变形或运动又会影响到流体流动的状态,固体和流体是相互作用相互影响的,这种物理系统的耦合就是通常所说的多物理场耦合系统,分析起来比单独去分析一个物理场要复杂得多。
比如液晃问题。随着液体推进剂不断燃烧,火箭的重心将不断变化,改变火箭的结构动力学特性,同时,火箭动力学响应又反过来影响液体推进剂的晃动。因此分析火箭运动稳定性和姿轨控系统可靠性时,必须考虑液体推进剂与贮箱等结构的耦合效应。
又例如热气动弹性问题。运载火箭在大气层内飞行时,由于飞行速度非常高,火箭与空气剧烈摩擦产生大量的热,使得火箭的气动加热问题变得十分突出。气动热将使运载火箭外层逐步升温,并产生热应力,从而影响结构的力学性能,改变其气动弹性性能(即改变壁板的颤振临界速度)。
三、多物理场耦合仿真软件的发展现状
可以求解一维,二维,三维问题;
基于有限元方法,包括连续和间断Galerkin及Petrov Galerkin方法;
全耦合全隐性求解;
支持读取多种格式网格;
网格自适应性功能;
并行计算;
P型自适应性;
内嵌的后处理;
支持弱耦合,MultiApp功能。