Fluent可以使用多种类型的计算网格。如2D模型中,可以使用三角形或四边形(或两者组合)网格;3D模型中,可以使用四面体、六面体、多面体、三棱柱、金字塔以及这些类型组合的网格。在实际应用中,选择何种类型的网格可以基于以下因素进行考虑:
工程模型常常涉及到极为复杂的几何形状,为这些复杂模型创建结构化或分块结构化网格(四边形或六面体网格)即便可能也常常非常消耗时间,因此对于复杂几何模型,常常使用三角形或四面体等非结构网格。但如果几何模型相对较为简单,则使用非结构网格在生成时间上并不存在优势,此时可以考虑使用结构化网格或分块结构网格。
对于复杂几何模型进行结构网格或分块结构网格划分,可能存在的风险包括:为了生成网格而对几何形状进行过度简化、网格质量问题以及存在效率较低的网格分布(如在不太重要的区域中布置过于细密的网格)而导致网格数量过多。
如果已经有了现成的结构网格,那通常应该想办法在Fluent中直接使用此网格而非重新生成新的网格,这样可以节省时间。这可能也是在 Fluent 仿真中使用四边形或六面体单元的动机之一。
注:Fluent可从其他程序(包括 FLUENT 4)导入结构化网格。
”
当几何形状复杂或计算区域的长度尺度范围分布非常宽广时,使用三角形/四面体网格,可以使网格数量远少于结构化的四边形/六面体网格,因为三角形/四面体网格允许在选定区域中细化网格。结构化的四边形/六面体网格常会迫使网格放置在不需要细密网格的区域。非结构化四边形/六面体网格具有三角形/四面体网格的许多优点,其适用于中等复杂程度的几何模型。
在某些情况下,四边形/六面体单元的一个特征可能使它们更经济,即它们允许比三角形/四面体网格更大的长宽比。三角形/四面体网格中长宽比过大将不可避免地影响网格的歪斜度,这对于数值计算是不利的,因为歪斜度过大会降低计算精度和妨碍收敛。因此若有一个相对简单的几何模型,其流动与几何体的形状非常一致,例如细长的管道,可以使用由高长宽比的四边形/六面体网格,与使用三角形/四面体网格相比,计算区域中的网格数量可能要少得多。
将整个区域中的四面体转化为多面体网格可以减少网格数量,虽然这么做会使得网格变得粗糙,但通常会加快收敛,这可能会节省一些计算费用。
总之,一般推荐以下做法:
多维情况下的主要误差来源是数值扩散(假扩散)。使用术语假扩散是因为这里的扩散并非真实现象,但其对流动计算的影响非常类似于增加真实扩散系数。
数值扩散具有以下特性:
多面体网格通常由四面体转化而来,其具有和四面体相同的数值特性。不过其优势在于面数更多,更圆滑,在数值稳定性和收敛性方面存在一定的优势。
”
(完)