本文摘要(由AI生成):
本文介绍了烟气循环模型在富氧煤粉燃烧中的应用,通过Zwietering法模拟了挥发分N和再循环NO的转化过程。研究利用CHEMKIN软件,结合PSR和PFR模型,模拟了带烟气再循环的O2/CO2气氛煤粉燃烧中燃料N的转化。通过模型参数设置和结果分析,探讨了不同氛围条件下温度对N元素转化率的影响,为深入理解富氧煤粉燃烧条件下NOx的生成与还原机理提供了有益参考。
由于煤粉燃烧中N化学反应的时间尺度和一、二次氧化剂的混合时间尺度在同一个数量级,模型需要一个适合的混合过程描述。采用的Zwietering法认为二次氧化剂(携带大部分氧气)将逐渐被引入到一次氧化剂(煤粉携带气)中,模拟了挥发分N和再循环NO由富燃的还原性气氛到贫燃的氧化性气氛的转化过程。在次烟煤热解过程中,随着温度升高,挥发分中碳黑与焦油的总量不变,但碳黑所占份额增加,因此这里近似假定所有的焦油裂解为碳黑和H2,且忽略挥发分中小分子碳氢化合物反应形成的碳黑。实际的富氧煤粉燃烧锅炉采用60%左右的烟气再循环(FGR)来调节燃烧的氧气浓度、炉膛燃烧温度和炉内烟气量。为了进一步研究实际富氧煤粉燃烧条件下NOx的生成与还原机理,采用CHEMKIN软件模拟了带烟气再循环的O2/CO2气氛煤粉燃烧时燃料N的转化,如图1所示。
图1 烟气再循环模型
PSR模型设置成FIX GAS TEMPERATURE求解类型,在实际的工业模型中代表预热过程,同时在PSR模型反应器界面设置好对应的压力、温度等工况条件。此模型中只有一个气体入口,因此PSR模型的反应物质浓度的设置将会与接下来的PFR模型保持一致。
图2 PSR模型设置
PFR模型中,发生了化学反应,因此PFR中要进行能量方程的求解。PFR模型中壁面温度设置的要高一点,这样可以保证反应进行。
图3 PFR模型设置
将PFR模型设置好后,需要设置烟气循环比例,烟气循环到PSR和出口中的比例加和应为100%。
图4 气体分离器设置
根据计算结果可以计算出不同氛围条件下的N元素转化率,如图5所示。
图5 O2/CO2气氛下温度对CRNO的影响