现在,当使用“物理首选项”属性的“显式”选项对符合补丁的四面体 (PC Tet) 进行网格剖分时,网格划分器可在最大纵横比方面提供更高质量的结果。PC Tet 网格划分器的稳健性也显著提高,适用于肮脏的几何体。
此外,“显式”选项具有某些新的默认行为,如下图所示。具体而言,对于统一目标网格,“最大尺寸”属性会自动设置为等于“元素大小”属性,并且对于曲面实体,“捕获曲率”和“捕获邻近性”全局细化属性会自动设置为“关闭”。
现在,对于谐波声学和谐波响应分析,您可以使用边界条件远程力、力矩、力、位移和加速度来求解多个载荷阶跃。以前,仅支持旋转速度 (RPM)。
此外,这些多步谐波分析现在支持用户定义频率的规范。
您现在可以从上游耦合场谐波分析中导入速度,并将此导入的速度作为声学激励应用于不共享同一模型单元的下游独立声学耦合场谐波分析中。
耦合场静态分析现在支持电(传导)物理场类型。这包括指定热和电传导物理相互作用以执行热电分析以及结构与热电传导的耦合。
耦合场瞬态分析现在支持通过压电耦合实现结构物理场和电(电荷)物理场之间的相互作用。该分析还支持压电耦合与声学物理场的结合。
结构优化分析具有新的优化方法:可混合密度。该方法使用与基于密度的方法相同的数学背景,并通过与基于水平集的技术进行交叉施肥来丰富。
现在,当您使用“水平集”优化方法时,新的“住房制造约束”使您能够创建包含一组给定面的防水设计。
添加了新的 LS-DYNA 材料模型:
*MAT_GENERAL_VISCOELASTIC材料模型现已推出。它允许定义随时间变化的材料行为,并支持剪切和体积松弛。
*MAT_ENHANCED_COMPOSITE_DAMAGE
*MAT_LAMINATED_COMPOSITE_FABRIC
*MAT_COMPOSITE_FAILURE
*MAT_ORTHOTROPIC_SIMPLIFIED_DAMAGE
添加了两个伤害模型,允许您模拟所有LS-DYNA材质模型的损坏:*MAT_ADD_DAMAGE_GISSMO和*MAT_ADD_EROSION。
摩擦现在可以应用于球形和万向节。
新的失真补偿附加组件可自动迭代解决方案并生成优化的补偿几何体,以便在加载或处理后,几何体变形至所需公差范围内。