导读:去年的任务实在是有点忙,熬了无数的夜,就一直没有时间和大家交流。今年感觉稍微好了一些,没有那么紧张,就继续分享一些工作中的有限元分析心得,推荐大家查看文末的相关阅读,绝大多数是笔者先前发布在仿真秀平台的有限元分析干货文章。
在短时工作的大功率设备热设计中,经常使用的校核热设计的方法是瞬态热分析。大家都知道瞬态热分析的目的是计算设备的温度时间历程的,那么就会遇到两个热力学相关的物性参数热阻和热容,这两个参数对瞬态热分析到底有什么影响?谁对抑制温升的效果更好?该如何选取相关材料达到更好的热设计效果?
一、典型设备
这是一个典型的短时工作的大功率设备,该设备基本为圆柱体,中间为大功率热源,顶部覆盖均温冷板,四周为储能单元,其中热源由多个片状的发热单元组成,如下图所示。
二、物性对比分析
先介绍下工况,每个发热单元热耗均为100W,工作3分钟,初始温度30度。首先热源、冷板、储能单元我们都采用铝合金,计算下结果。结果如图2所示。
最高温度70.6℃。温升曲线如下所示。
可以看出温升基本是线性的,如果初始温度增加30℃,最高温度也会增加30℃。
我们将材料变为紫铜,再计算下。
最高温度58.8℃.温升曲线如下所示。
通过对比分析看出,铜确实比铝的温升要低11.8℃。但是各个零件之间的接触热阻没有设置,如果设置了接触热阻结果会不会有变化。
三、接触热阻
在ansys workbench中,接触热阻是以接触传热系数定义的,如下所示。
当涂抹导热硅脂后接触传热系数,可以设为,如果不设置这个数值,默认的值为无穷大,即接触热阻为0。
在接触传热系数为 ,材料设为铝合金,计算结果如下。
最高温度为78.2℃,同未设置接触热阻相比,温度增加了7.6℃。通过云图可以看出在接触面的温度明显不连续。
接触传热系数为,材料设为紫铜,计算结果如下。
最高温度为66.1℃,同未设置接触热阻相比,温度增加了7.3℃。
四、理论对比
我们采用简单的温升计算公式,来计算下温升。
c为比热容,q为热耗, t为时间, m为质量。铝合金和紫铜的相关物性如下所示。
将铝合金和紫铜的物性参数带入计算:
这个温度计算出来应该是模型的平均温度。究竟是不是平均温度,需要用仿真分析的结果验证下。首先模型平均温度计算公式如下。
为节点总数,要计算平均温度 ,需要读出模型中的节点温度,在workbench中需要插入命令流来完成。在这里主要采用APDL语言中的*get命令来完成,具体命令及设置方式如下图所示。
图 11命令流
计算结果从这里读取,如下所示。
五、对比分析结果
对以上计算结果进行总结,总结结果如下所示。
通过上表中的计算结果,可以看出理论计算值和仿真值的平均温度误差较小,但是随着接触热阻的变大,理论计算值和仿真得出的平均温度的差距也在变大。紫铜在抑制温升方面要比铝合金更好,虽然铝合金的比热容较高,但是铜的密度要比铝合金的密度大得多,综合下来,同等体积下,铜的热容更大,但是这是以牺牲重量的代价得到的,在航空航天领域,重量往往是决定项目成败的关键因素,因此不能盲目采用铜作为储能材料。目前经常使用的是相变材料作为储能单元,关于相变材料的相关特性及仿真分析方法在将下篇介绍。
相关阅读: