首页/文章/ 详情

MATLAB非线性可视化之线性系统相图

3年前浏览2874

我们在前面的多摆模型中,利用多摆的微分方程模型,求解出了多摆每时每刻的位置随时间的变化。当然那是一个高度复杂的非线性模型,难以上手分析。


这篇文章,我们首先利用一个二阶的线性模型进行求解,并引入微分方程定性分析中常用的工具——相图。


图片


首先考虑下面这个经典的二阶阻尼振动方程:


图片

将它整理为线性系统,如dx=Ax形式的样子:

图片

矩阵A是一个二阶矩阵。我们取k=0.925,c=0.3。则矩阵A的特征根可以求得为:λ1=-0.15 0.95i,λ2=-0.15-0.95i。特征值的实部都是负数,代表系统收敛。特征值的虚部不为零,存在震荡现象。

我们取三组不同的位置和速度,作为初始状态点进行计算,可以得到下面的时间-位移曲线:

图片

从时域曲线上看,这些曲线之间似乎没有什么关系。

但是如果我们绘制出 位移-速度 图,可以得到:

图片

三条曲线以一种相同的方式逐渐向内汇集。我们把这种曲线叫做轨迹。这些轨迹如同在流场中的水流一般,在一个场空间内运动。我们把这个二维场叫做相空间。这个场每一个点的向量为[dx,ddx]。这个向量场组成的相空间,能够完全的描述出整个系统,沿着向量场的箭头逐步连线,便可以预测出任意一点未来的运动状态。把这个向量场绘制出来,如下图:

图片

我们把这种螺旋点叫做稳定的焦点,特点是特征根的实根为负数,虚部不为零。这种相空间在时域上,对应着震荡收敛的解。

同理,当两个特征根都为正,虚部不为零时,则会出现发散的螺旋点,称为不稳定的焦点。

当特征根不存在虚部,也对应着4种情况:特征根同号,特征根异号,特征根一个为0,特征根两个为0。

特征根同号的话,还是以前面的阻尼举例子。继续增大阻尼,使得系统达到过阻尼状态。我们取k=0.96,c=2,此时特征根等于λ1=-0.8,λ2=-1.2。这种稳定点叫做稳定的结点。同样取三个不同的初始值,计算出相轨迹,与计算得到的相空间叠加,如下图:

图片

如果把前面单自由度震荡系统中的弹簧去掉,变成只有阻尼c的滑块。此时取k=0,c=2,此时特征根为-2和0。代表只有一个吸引分量,另一个维度保持既不吸引也不排斥的状态。这时候表现为滑块速度逐渐降低,最终停到哪里算哪里,整个dx=0这根线都是它的稳定位置。

图片

同样,如果不要阻尼项,只有弹簧,则变成了永远震荡下去的弹簧振子。此时取k=1,c=0,特征根为-1i和1i两个虚数。代表只有震荡分量,没有吸引或排斥分量。此时系统为一个标准的正圆。各个轨线在各自的圆上不停的运动互不影响。

图片

还剩一个特征根是一正一负的,用弹簧振子举例不是直观,所以就不拿弹簧说事了。此时的中心点叫做鞍点,由于特征根的特性,导致了一部分吸引一部分排斥的特点。很多常见的不稳定平衡点,比如单摆的180°最高点。表现为“你以为我要在这里停下,其实我只是路过”。

图片


绘制二维线性系统的相平面代码如下:



我们在前面的多摆模型中,利用多摆的微分方程模型,求解出了多摆每时每刻的位置随时间的变化。当然那是一个高度复杂的非线性模型,难以上手分析。
这篇文章,我们首先利用一个二阶的线性模型进行求解,并引入微分方程定性分析中常用的工具——相图。
首先考虑下面这个经典的二阶阻尼振动方程:


clear

clc

close all

%线性系统,用来展示相空间的用途
%小阻尼震荡(负实,共轭虚部)

A=[0,1;

   -0.925,-0.3];
   
%大阻尼震荡(负实,无虚部)

 A=[0,1;
    -0.96,-2];
   
%只有阻尼(一个为0一个为负)

% A=[0,1;

%     0,-2];

%只有弹簧(实部都为0)

% A=[0,1;

%     -1,0];

%鞍点

% A=[0.15,0;

%     0,-0.15];
[y,dy,u,v]=PhaseSpace_Linear(-5:0.05:5,-4:0.05:4,A);
h=1e-2;

x0=0:h:20;N=length(x0);

%相同的微分方程,不同的初始状态

[y1,~]=ODE_RK4_hyh(x0,h,[4;-2],A);

[y2,~]=ODE_RK4_hyh(x0,h,[0;-4],A);

[y3,~]=ODE_RK4_hyh(x0,h,[-3;3],A);


figure()

hold on

plot(x0,y1(1,:),'color',[1,0,0])

plot(x0,y2(1,:),'color',[0,1,0])

plot(x0,y3(1,:),'color',[0,0,1])

%绘制箭头

xy_lim=axis;

xy_ratio=get(gca, 'DataAspectRatio');xy_ratio=xy_ratio(1:2);

N_Arrow=5;

for k=1:N_Arrow

   N_k=round(N/N_Arrow*(k-0.83));
   
   plot_arrow( xy_lim,xy_ratio,[x0(N_k),y1(1,N_k)]...
   
       ,[1,0,0],1, [x0(N_k)-x0(N_k-10),y1(1,N_k)-y1(1,N_k-10)] )
       
  plot_arrow( xy_lim,xy_ratio,[x0(N_k),y2(1,N_k)]...
 
       ,[0,1,0],1, [x0(N_k)-x0(N_k-10),y2(1,N_k)-y2(1,N_k-10)] )
       
   plot_arrow( xy_lim,xy_ratio,[x0(N_k),y3(1,N_k)]...
   
       ,[0,0,1],1, [x0(N_k)-x0(N_k-10),y3(1,N_k)-y3(1,N_k-10)] )
       
end

hold off

legend("条件1","条件2","条件3")

box on

xlabel('t');ylabel('x');

figure()

hold on

plot(y1(1,:),y1(2,:),'color',[0.8,0,0],'linewidth',1)

plot(y2(1,:),y2(2,:),'color',[0,0.8,0],'linewidth',1)

plot(y3(1,:),y3(2,:),'color',[0,0,0.8],'linewidth',1)

xlim([-5,5]);ylim([-4,4])

%绘制箭头xy_lim=axis;

xy_ratio=get(gca, 'DataAspectRatio');
xy_ratio=xy_ratio(1:2);

N_Arrow=3;

for k=1:N_Arrow

   N_k=round(N/N_Arrow*(k-0.9));
   
   plot_arrow( xy_lim,xy_ratio,[y1(1,N_k),y1(2,N_k)]...
   
       ,[0.8,0,0],2, [y1(1,N_k)-y1(1,N_k-10),y1(2,N_k)-y1(2,N_k-10)] )
       
   plot_arrow( xy_lim,xy_ratio,[y2(1,N_k),y2(2,N_k)]...
   
       ,[0,0.8,0],2, [y2(1,N_k)-y2(1,N_k-10),y2(2,N_k)-y2(2,N_k-10)] )
       
   plot_arrow( xy_lim,xy_ratio,[y3(1,N_k),y3(2,N_k)]...
   
       ,[0,0,0.8],2, [y3(1,N_k)-y3(1,N_k-10),y3(2,N_k)-y3(2,N_k-10)] )
       
end

hold off

xlim([-5,5]);ylim([-4,4])

box on

xlabel('x');ylabel('dx');
% figure()hold onh=streamslice(y,dy,u,v);xlim([-5,5]);ylim([-4,4])box onxlabel('x');ylabel('dx');


function [F,Output]=Fdydx(x,y,Input)

%形式为Y'=F(x,Y)的方程,参见数值分析求解常系数微分方程相关知识%高次用列向量表示,F=[dy(1);dy(2)];y(1)为函数,y(2)为函数导数A=Input;F=A*y;Output=[];end
function [y,dy,u,v]=PhaseSpace_Linear(y1,y2,A)[y,dy]=meshgrid(y1,y2);%初始化网格u=zeros(size(y));v=u;for k=1:numel(y)    %计算网格上每一个点的上的方向    F=Fdydx(0,[y(k);dy(k)],A);    u(k)=F(1);    v(k)=F(2);endend

function [y,Output]=ODE_RK4_hyh(x,h,y0,Input)%4阶RK方法%h间隔为常数的算法y=zeros(size(y0,1),size(x,2));y(:,1)=y0;for ii=1:length(x)-1    yn=y(:,ii);    xn=x(ii);    [K1,~]=Fdydx(xn    ,yn       ,Input);    [K2,~]=Fdydx(xn h/2,yn h/2*K1,Input);    [K3,~]=Fdydx(xn h/2,yn h/2*K2,Input);    [K4,~]=Fdydx(xn h  ,yn h*K3  ,Input);    y(:,ii 1)=yn h/6*(K1 2*K2 2*K3 K4);endOutput=[];end
function plot_arrow(xy_lim,xy_ratio,xy_arrow,arrow_color,arrow_width,arrow_direction)%初始化箭头形状(归一化的形状)arrow_0=[0,0;-1,0.5;-1,-0.5];%对方向进行归一化a_dn=arrow_direction(:)./xy_ratio(:);a_dn=a_dn/sqrt(sum(a_dn.^2));d=(xy_lim(4)-xy_lim(3) xy_lim(2)-xy_lim(1))/2;%箭头对窗口缩放arrow_1=arrow_0*arrow_width*0.03*d;%箭头旋转arrow_2=arrow_1*[a_dn(1),a_dn(2);-a_dn(2),a_dn(1)];%箭头变形xy_ratio_n=xy_ratio/sqrt(sum(xy_ratio.^2));%对比例尺归一化arrow_3=arrow_2.*xy_ratio_n xy_arrow;fill(arrow_3(:,1),arrow_3(:,2),arrow_color,'EdgeColor','none')end





  • 图片

  • 图片

  • 将它整理为线性系统,如dx=Ax形式的样子:

  • 图片

  • 矩阵A是一个二阶矩阵。我们取k=0.925,c=0.3。则矩阵A的特征根可以求得为:λ1=-0.15 0.95i,λ2=-0.15-0.95i。特征值的实部都是负数,代表系统收敛。特征值的虚部不为零,存在震荡现象。

  • 我们取三组不同的位置和速度,作为初始状态点进行计算,可以得到下面的时间-位移曲线:

  • 图片

  • 从时域曲线上看,这些曲线之间似乎没有什么关系。

  • 但是如果我们绘制出 位移-速度 图,可以得到:

  • 图片

  • 三条曲线以一种相同的方式逐渐向内汇集。我们把这种曲线叫做轨迹。这些轨迹如同在流场中的水流一般,在一个场空间内运动。我们把这个二维场叫做相空间。这个场每一个点的向量为[dx,ddx]。这个向量场组成的相空间,能够完全的描述出整个系统,沿着向量场的箭头逐步连线,便可以预测出任意一点未来的运动状态。把这个向量场绘制出来,如下图:

  • 图片

  • 我们把这种螺旋点叫做稳定的焦点,特点是特征根的实根为负数,虚部不为零。这种相空间在时域上,对应着震荡收敛的解。

  • 同理,当两个特征根都为正,虚部不为零时,则会出现发散的螺旋点,称为不稳定的焦点。

  • 当特征根不存在虚部,也对应着4种情况:特征根同号,特征根异号,特征根一个为0,特征根两个为0。

  • 特征根同号的话,还是以前面的阻尼举例子。继续增大阻尼,使得系统达到过阻尼状态。我们取k=0.96,c=2,此时特征根等于λ1=-0.8,λ2=-1.2。这种稳定点叫做稳定的结点。同样取三个不同的初始值,计算出相轨迹,与计算得到的相空间叠加,如下图:

  • 图片

  • 如果把前面单自由度震荡系统中的弹簧去掉,变成只有阻尼c的滑块。此时取k=0,c=2,此时特征根为-2和0。代表只有一个吸引分量,另一个维度保持既不吸引也不排斥的状态。这时候表现为滑块速度逐渐降低,最终停到哪里算哪里,整个dx=0这根线都是它的稳定位置。

  • 图片

  • 同样,如果不要阻尼项,只有弹簧,则变成了永远震荡下去的弹簧振子。此时取k=1,c=0,特征根为-1i和1i两个虚数。代表只有震荡分量,没有吸引或排斥分量。此时系统为一个标准的正圆。各个轨线在各自的圆上不停的运动互不影响。

  • 图片

  • 还剩一个特征根是一正一负的,用弹簧振子举例不是直观,所以就不拿弹簧说事了。此时的中心点叫做鞍点,由于特征根的特性,导致了一部分吸引一部分排斥的特点。很多常见的不稳定平衡点,比如单摆的180°最高点。表现为“你以为我要在这里停下,其实我只是路过”。

  • 图片


  • 绘制二维线性系统的相平面代码如下:


  • 参考资料:

  • [1]Morris W. Hirsch. 微分方程、动力系统与混沌导论[M]. 人民邮电出版社, 2008.

  • [2]刘秉正. 非线性动力学与混沌基础[M]. 东北师范大学出版社, 1994.




参考资料:

[1]Morris W. Hirsch. 微分方程、动力系统与混沌导论[M]. 人民邮电出版社, 2008.

[2]刘秉正. 非线性动力学与混沌基础[M]. 东北师范大学出版社, 1994.

理论科普
著作权归作者所有,欢迎分享,未经许可,不得转载
首次发布时间:2021-12-08
最近编辑:3年前
过冷水
博士 | 讲师 讨论号:927550334
获赞 361粉丝 184文章 107课程 11
点赞
收藏
作者推荐
未登录
还没有评论
课程
培训
服务
行家
VIP会员 学习计划 福利任务
下载APP
联系我们
帮助与反馈